

European Journal of Chemistry

Journal homepage: www.eurjchem.com

Synthesis and studying the antitumor activity of novel 5-(2-methylbenzimidazol-5-yl)-1,3,4-oxadiazole-2(3*H*)-thiones

Shadia A. Galal^{a,*}, Ahmed S. Abdelsamie^a, Mireya L. Rodriguez^b, Sean M. Kerwin^b and Hoda I. El Diwani^a

^a Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research,

National Research Centre, Dokki, 12622, Cairo, Egypt ^b Department of Chemistry and Biochemistry, Division of Medicinal Chemistry and Institute for Cellular and Molecular Biology,

ABSTRACT

lines.

The University of Texas, Austin, TX 78712 USA

*Corresponding author at: Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Dokki, 12311, Cairo, Egypt. Tel.: +202.33371617; fax: +202.3337093. E-mail address: sh12galal@yahoo.com (S. A. Galal).

ARTICLE INFORMATION

Received: 23 March 2010 Received in revised form: 29 April 2010 Accepted: 30 April 2010 Online: 30 June 2010

KEYWORDS

Oxadiazoles Benzimidazoles Antitumor activity Cytotoxicity Breast cancer human cell (MCF-7) Lung cancer human cell (A549)

1. Introduction

The benzimidazole nucleus is an important pharmacophore in drug discovery due to being a good bioisostere of naturally occurring nucleotides. Several promising antitumor active agents were found to contain the benzimidazole ring system [1-11]. Benzimidazoles are also used as biomimetics of guanine residues [1] and benzimidazole derivatives selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo [2]. They were found to exhibit antitumor activity against several tumor cell lines like breast cancer human cell (MCF-7) and lung cancer human cell (A549) [10]. Potent antitumor 2-methylbenzimidazole substituted with 6 or 5membered heterocycles was previously synthesized by our laboratory [12-14]. Compounds I and II were found to be potent against non-small cell lung cancer and breast cancer (Figure 1) [12]. Compounds, 2-methyl-5-nitro-1*H*-benzo[*d*] (III) and 1-(5-((2-methyl-5-nitro-1*H*-benzo[*d*] imidazole imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-ylthio)propan-2-one (IV), were found to have high cytotoxic activity against breast cancer (MCF7) (Figure 1) [14].

On the other hand, five-membered 1,3,4-oxadiazole heterocycles are also useful intermediates for the development of molecules of pharmaceutical interest where several promising antitumor compounds are found to contain the oxadiazole ring system [15-17]. 1,3,4-Oxadiazole heterocycles are good bioisosteres of amides and esters, which can contribute substantially in increasing pharmacological activity by participating in hydrogen bonding interactions with the receptors [18].

As a continuation to our previous work in synthesizing antitumor benzimidazoles, we aimed in this manuscript to investigate the effect of substitution of the benzimidazole moiety at its 5(6) position by a basic moiety, which is 1,3,4oxadiazole carrying different lipophilic and polar groups on the antitumor activity against breast cancer (MCF-7) and lung cancer (A549) human cell lines.

2. Experimental

The influence of the incorporation of 1,3,4-oxadiazole ring into 2-methyl-1H-benzimidazole derivatives

producing a series of substituted 5(6)-(2-methylbenzimidazol-5-yl)-1,3,4-oxadiazoles on the antitumor

activity was studied in this study. The antitumor activity of the new compounds was tested against breast

cancer cell line MCF-7 and lung cancer cell line A549. S-5-(2-methyl-1*H*-benzo[*d*]imidazol-5-yl)-1,3,4oxadiazol-2-yl 2-nitrobenzenesulfonothioate (9) showed potent activity against both MCF-7 and A549 cell lines. Whereas, compounds 7, 11-13 and 15-17 have moderate growth inhibitory activity on the two cell

2.1. Synthesis

2.1.1. Preparation of 5-(2-methyl-1H-benzo[d]imidazol-5yl)-1,3,4-oxadiazole-2(3H)-thione (7) and 5-(2-methyl-6nitro-1H-benzo[d]imidazole-5-yl)-1,3,4-oxadiazole-2(3H)thione (14)

General Procedure: A mixture of **6a** or **6b** (5 mmole), KOH (5 mmole) and carbon disulphide (5 mL) in ethanol (50 mL) was refluxed for 12 h (Scheme 1). The reaction mixture was then concentrated, cooled and acidified with dilute HCl. The solid mass that separated out, was filtered, washed with ethanol, dried and recrystallized from ethanol as a greenish-brown powder.

2.1.1.1. Compound 7: $R_f = 0.76$ (chloroform/ethylacetate/ methanol, 1:2:1). Yield: 90%. M.p.: >300 °C. ¹H-NMR (500 MHz, DMSO-d₆) δ : 2.54 (s, 3H, CH₃), 7.60 (d, *J*=8.6 Hz, 1H, H7), 7.65 (d, *J* = 8.6 Hz, 1H, H6), 7.92 (s, 1H, H4), 10.30, 11.63 (br., NH

(Breast cancer, MCF7, GI₅₀=1.82E-05) (Breast cancer, T47D, GI₅₀= 1.68E-06) (Non small lung cancer, H0P92, GI₅₀=1.49 E-05)

(Breast cancer, MCF7, GI₅₀=2.87E-05) (Breast cancer, T47D, GI₅₀= 1.68E-06) (Non small lung cancer, NCI-H522, GI₅₀=1.25 E-06)

III (Breast cancer, MCF7, IC₅₀ = 4.2 μM)

Figure 1. Structures of previously synthesized potent antitumor benzimidazoles.

Scheme 1

benzimidazole, NH oxadiazolethione ring, D₂O exchangeable). IR (cm⁻¹): 3406 (NH benzimidazole), 3312 (NH oxadiazole ring), 1627 (C=N benzimidazole), 1604 (C=N oxadiazole ring), 1283.55 (C=S). MS: m/z 232 (M⁺, 100%). Anal. Calcd for C₁₀H₈N₄OS: C, 51.71; H, 3.47; N, 24.12; S, 13.81. Found: C, 51.59; H, 3.36; N, 24.21; S, 13.92.

2.1.1.2. *Compound* **14**: $R_f = 0.73$ (chloroform/ethyl acetate/ methanol, 1:2:1). Yield: 88%. M.p.: >300 °C. ¹H-NMR (270 MHz, DMSO-d₆) δ : 2.52 (s, 3H, CH₃), 7.64 (s, 1H, H4), 7.92 (s, 1H, H7), 9.46 (br., NH benzimidazole, D₂O exchangeable). IR (cm⁻¹): 3422 (NH benzimidazole), 3312 (NH thioxadiazole), 1626 (C=N benzimidazole), 1588 (C=N oxadiazole), 1526 and 1365 (NO₂). Anal. Calcd for C₁₀H₇N₅O₃S: C, 43.32; H, 2.54; N, 25.26; S, 11.56. Found: C, 43.29; H, 2.63; N, 25.16; S, 11.50.

2.1.2. Preparation of S-5-(2-methyl-1H-benzo[d]imidazol-5yl)-1,3,4-oxadiazole-2-ylmethanesulfonothioate (8) and S-5-(2-methyl-1H-benzo[d]imidazol-5-yl)-1,3,4-oxadiazol-2-yl 2nitrobenzenesulfonothioate (9)

General Procedure: To a solution of **7** (3 mmole) in pyridine (10 mL) was added methanesulfonyl chloride or 2-nitro benzenesulfonyl chloride (4 mmole) and the solution was stirred at room temperature for 12 h (Scheme 2). The reaction mixture was poured into water and the precipitate formed was filtered off and crystallized from methanol to give **8** and **9**, respectively.

2.1.2.1. *Compound 8*: Brown solid. $R_f = 0.43$ (petroleum ether: ethyl acetate: methanol, 1:2:1/2). Yield: 70%. M.p.: 125-127 °C. ¹H-NMR (270 MHz, DMSO-d₆) δ : 2.44 (s, 3H, CH₃ benz imidazole), 2.82 (s, 3H, CH₃, SO₂CH₃), 7.48 (d, *J* = 8.58 Hz, 1H, H7), 7.86 (d, *J* = 8.58 Hz, 1H, H6), 8.40 (s, 1H, H4), 12.5 (br., NH and OH, D₂O exchangeable). IR (cm⁻¹): 3410 (NH), 1628 (C=N benzimidazole), 1604 (C=N oxadiazole ring), 1194 (SO₂). Anal. Calcd. for C₁₁H₁₀N₄O₃S₂: C, 42.57; H, 3.25; N, 18.05; S, 20.66. Found: C, 42.60; H, 3.21; N, 18.29; S, 20.40.

2.1.2.2. *Compound* **9**: Brown solid. $R_f = 0.45$ (petroleum ether: ethyl acetate: methanol, 1:2:1/2). Yield: 69%. M.p.: 213-215 °C. ¹H-NMR (270 MHz, DMSO-d₆) δ : 2.59 (s, 3H, CH₃ benz imidazole), 7.46 (d, J = 8.58 Hz,1H, H7), 7.64 (m, 1H, H4' nitrobenzenesulfonothioate), 7.91 (d, J = 8.58 Hz,1H, H6), 8.25 (m, 2H, H5' and H6' nitrobenzenesulfonothioate), 8.44 (s,1H, H4), 8.72 (m, 1H, H3' nitrobenzenesulfonothioate), 12.8 (br., NH and OH, D₂O exchangeable). IR (cm⁻¹): 3406 (NH), 1627 (C=N benzimidazole), 1595 (C=N oxadiazole ring), 1398 (SO₂), 1453 and 1368 (NO₂). Anal. Calcd for C₁₆H₁₁N₅O₅S₂: C, 46.04; H, 2.66; N, 16.78; S, 15.36. Found: C, 46.15; H, 2.70; N, 16.70; S, 15.25.

2.1.3. Preparation of 2-(5-(2-methyl-1H-benzo[d]imidazol-5yl)-1,3,4-oxadiazol-2-ylthio)acetonitrile (10) and 2-((1Hbenzo[d]imidazol-2-yl)methylthio)-5-(2-methyl-1Hbenzo[d]imidazol-5-yl)-1,3,4-oxadiazole(11)

General Procedure: A mixture of **7** (5 mmole), chloroacetonitrile or 2-chloromethylbenzimidazole (5 mmole) and anhydrous potassium carbonate (6 mmole) in absolute ethanol (30 mL) was stirred at room temperature for 6-8 h (Scheme 3). The mixture was filtered and the filtrate was evaporated until dryness, the residue obtained was washed with water and recrystallized from ethanol to give **10** and **11** respectively.

2.1.3.1. *Compound* **10**: Buff solid. $R_f = 0.68$ (petroleum ether: ethyl acetate: methanol, 1:2:1/2). Yield: 84%. M.p.: 228-230 °C. ¹H-NMR (270 MHz, DMSO-d₆) δ : 2.49 (s, 3H, CH₃), 4.52 (s, 2H, CH₂), 7.63 (d, *J* = 8.41 Hz, 1H, H7), 7.77 (d, *J* = 8.41 Hz, 1H, H6), 8.06 (s, 1H, H4), 12.65 (br., D₂O exchangeable, NH benzimidazole). IR (cm⁻¹): 3365 (NH), 2249 (C=N), 1627 (C=N benzimidazole), 1576 (C=N oxadiazole ring). MS: m/z 271 (M⁺, 50%). Anal. Calcd for C₁₂H₉N₅OS: C, 53.13; H, 3.34; N, 25.81; S, 11.82. Found: C, 53.41; H, 3.20; N, 25.90; S, 11.92.

2.1.3.2. *Compound* **11:** Brown solid. $R_f = 0.36$ (petroleum ether: ethyl acetate: methanol, 1:2:1/2). Yield: 88%. M.p.: 250-251 °C. ¹H-NMR (270 MHz, DMSO-d₆) δ : 2.5 (s, 3H, CH₃), 4.69 (s, 2H, CH₂), 7.26 (m, 3H, H5` + H6` + H7`), 7.51 (m, 1H, H4`), 7.73 (d, *J* = 8.35 Hz, 1H, H7), 7.82 (d, *J* = 8.35 Hz, 1H, H6), 8.26 (s, 1H, H4), 11.92 (s, 1H, NH, D₂O exchangeable), 12.19 (s, 1H, NH, D₂O exchangeable), 12.19 (s, 1H, NH, D₂O exchangeable). IR (cm⁻¹): 3437 (NH), 1626 (C=N). Anal. Calcd for C₁₈H₁₄N₆OS: C, 59.65; H, 3.89; N, 23.19; S, 8.85. Found: C, 59.72; H, 3.71; N, 23.15; S, 8.95.

2.1.4. Preparation of 1,2-Bis(5-(2-methyl-1Hbenzo[d]imidazol-5-yl)-1,3,4-oxadiazol-2-ylthio)ethane (12) and Bis(5-(2-methyl-1H-benzo[d]imidazol-5-yl)-1,3,4oxadiazol-2-ylthio)methane (13)

General procedure: A mixture of **7** (5 mmole), dibromoethane or diiodomethane (2.5 mmole) and anhydrous potassium carbonate (6 mmole) in dimethylformamide (30 mL) was stirred at room temperature for 4 h. The reaction mixture was filtered off and crystallized from ethanol to give **12** and **13**, respectively (Scheme 3).

2.1.4.1. *Compound* **12**: Brown solid. $R_f = 0.76$ (petroleum ether: ethyl acetate: methanol, 2:2:1/2). Yield: 76%. M.p.: 275-277 °C. ¹H-NMR (270 MHz, DMSO-d₆) δ : 2.50 (s, 6H, 2CH₃), 2.77 (s, 4H, 2CH₂), 7.52 (d, J = 8.1 Hz, 2H, H7 and H7`), 7.67 (d, J = 8.1 Hz, 2H, H6 and H6`), 7.94 (s, 2H, H4 and H4`), 11.75 (br., NH benzimidazole, D₂O exchangeable). IR (cm⁻¹): 3359 (NH), 1625 (C=N). MS: m/z 490 (M⁺, 3%). Anal. Calcd for C₂₂H₁₈N₈O₂S₂: C, 53.86; H, 3.70; N, 22.84; S, 13.07. Found: C, 53.70; H, 3.65; N, 22.98; S, 13.16.

2.1.4.2. *Compound* **13**: Brown solid. $R_f = 0.75$ (petroleum ether: ethyl acetate: methanol, 2:2:1/2). Yield: 72%. M.p.: 245-247 °C. ¹H-NMR (500 MHz, DMSO-d₆) δ : 2.45 (s, 6H, 2CH₃), 3.31 (s, 2H, CH₂), 7.38 (d, *J* = 8.05 Hz, 2H, H7 and H7⁻), 7.59 (d, *J* = 8.05 Hz, 2H, H6 and H6⁻), 7.91 (s, 2H, H4 and H4⁻). IR (cm⁻¹): 3406 (NH), 1629 (C=N). MS: m/z 478 (M*+2, 3%). Anal. Calcd for C₂₁H₁₆N₈O₂S₂: C, 52.93; H, 3.38; N, 23.51; S, 13.46. Found: C, 53.90; H, 3.50; N, 23.60; S, 13.49.

2.1.5. Preparation of 2-(5-(2-methyl-6-nitro-1Hbenzimidazole-5-yl)-1,3,4-oxadiazole-2-ylthio)acetonitrile (15)

A mixture of **14** (5 mmole), chloroacetonitrile (5 mmole) and anhydrous potassium carbonate (6 mmole) in absolute ethanol (30 mL) was stirred at room temperature for 6 h. The reaction mixture was filtered and the filtrate was evaporated until dryness. The residue was washed with water and recrystallized from ethanol as a brown powder (Scheme 4). R_f = 0.66 (petroleum ether/ethyl acetate/methanol, 1:2:1/4). Yield: 80%. M.p.: 100-101°C. IR (cm⁻¹): 3364 (NH), 2250 (C=N), 1627 (C=N), 1577 and 1462 (NO₂), MS: m/z 316 (M⁺, 5%). Anal. Calcd for C₁₂H₈N₆O₃S: C, 45.57; H, 2.55; N, 26.57; S, 10.14. Found: C, 45.72; H, 2.61; N, 26.40; S, 10.03.

2.1.6. Preparation of 3-(2-hydroxyphenyl)-2-(5-(2-methyl-6nitro-1H-benzo[d]imidazol-5-yl)-1,3,4-oxadiazol-2ylthio)acrylonitrile (16) and 2-Imino-3-(5-(2-methyl-6-nitro-1H-benzo[d]imidazol-5-yl)-1,3,4-oxadiazol-2-ylthio)-2Hchromen-7-ol (17)

General Procedure: To a solution of **15** (3 mmole) in pyridine (10 mL) was added an equivalent amount of salicylaldehyde or 2,4-dihydroxybenzaldehyde. The solution was stirred at room temperature for 12 h. The reaction mixture was poured into water and the precipitate formed was filtered off and recrystallised from butanol to give **16** and **17**, respectively (Scheme 4).

2.1.6.1. Compound 16: Yellowish-green solid. $R_f = 0.75$ (petroleum ether: ethyl acetate, 1:1). Yield: 76%. M.p.: 173-175°C. ¹H-NMR (270 MHz, DMSO-d₆) δ : 2.52 (s, 3H, CH₃), 6.60 (s, 1H, CH=), 6.84-6.88 (m, 4H, Phenyl protons), 7.64 (s, 1H, H4),

8.05 (s, 1H, H7), 9.46 (br., NH benzimidazole, D₂O exchangeable), 11.05 (s, 1H, phenolic OH). IR (cm⁻¹): 3430 (NH benzimidazole), 3000 (br., intermolecular H-bonded OH,), 2188 (C \mathbb{Z} N), 1633 (C=N), 1591 (C=N oxadiazole), 1527 and 1336 (NO₂). Anal. Calcd for C₁₉H₁₂N₆O₄S: C, 54.28; H, 2.88; N, 19.99; S, 7.63. Found: C, 54.40; H, 2.68; N, 19.77; S, 7.41.

2.1.6.2. *Compound* **17:** White-greenish solid. $R_f = 0.16$ (petroleum ether: ethyl acetate, 1:2). Yield: 80%. M.p.: 130-132 °C. ¹H-NMR (270 MHz, DMSO-d₆) δ : 2.57 (s, 3H, CH₃), 6.28 (s,1H, H4'), 6.35 (d, J = 8.25 Hz,1H, H5'), 7.10 (br., 1H, NH imine, D₂O exchangeable)), 7.49 (d, J = 8.25 Hz, 1H, H6'), 8.02 (s,1H, H4),

8.18 (s,1H, H8[\]), 8.40 (s,1H, H7), 8.90 (br., NH benzimidazole, D_2O exchangeable), 9.87 (s, 1H, phenolic OH, D_2O exchange able). IR (cm⁻¹): 3433 (NH benzimidazole), 3354 (NH imino), 3000 (br., intermolecular H-bonded OH,), 1629 (C=N), 1529 and 1343 (NO₂). Anal. Calcd for C₁₉H₁₂N₆O₅S: C, 52.29; H, 2.77; N, 19.26; S, 7.35. Found: C, 52.13; H, 2.81; N, 19.18; S, 7.34.

2.2. Cytotoxicity Assays

Cell culture cytotoxicity assays were carried out as described previously [10]. Briefly, aliquots of 100 μ l cell suspension (1-3 x 10³ cells) were placed in microtiter plates in

Scheme 4

an atmosphere of 5% CO₂ at 37 °C. After 24 h, 100 μ L of culture media and 2 μ L of the compound in DMSO were added to each well in duplicate, and the plates were incubated an additional 72 h at 37 °C. There was no effect on the growth of cells compared to that of cells in culture media alone at this DMSO concentration. Compounds, along with mitomycin-C as a positive control were evaluated at final concentrations ranging from 0.001 to 50 μ M.

After the 72 h incubation, the culture media was removed from each well, and 200 μ L of fresh media and 20 μ L of Alamar Blue reagent were added, followed by additional 6 h incubation. Cell viability was detected by fluorescent intensity using a Beckman Coulter DTX880 plate reader with excitation at 530 nm and emission at 590 nm. The fluorescence data obtained from the cytotoxicity studies was used to calculate the percent growth according to the following equation (1):

% Growth =
$$100*(F_{test} - F_{time0})/(F_{ctrl} - F_{time0})$$
 (1)

Where Mean F_{time0} = the averaged measured fluorescent intensities of Alamar Blue reagent at the time just before the exposure of the cells to the test substance; Mean F_{test} = the averaged measured fluorescent intensities of Alamar Blue reagent after 72 h exposure of the cells to the test substance at a particular concentration; Mean F_{crtl} = the averaged measured fluorescent intensities of Alamar Blue reagent after 72 h exposure of the cells to the test substance.

The IC₅₀, the compound concentration for which the growth of treated cells from time₀ was only 50% as much as the vehicle-control was determined by non-linear regression fitting the data to equation (2):

$$y = Min + (Max-Min)/(1+10^{(x-logIC_{50})*n)})$$
 (2)

Where Min= the minimum response plateau (0%Growth); Max= the maximum response plateau (100% Growth); y=% Growth at each test compound concentration; n is a fitted parameter (the Hill slope coefficient).

2.2. Instrumentation

Melting points were taken on a capillary melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded using Jeol EX-200 MHZ, 270 MHz and 500 MHz NMR spectrometers with Me₄Si as an internal standard. Chemical shifts are reported in parts per million (ppm) from the tetramethylsilane resonance in the indicated solvent. Coupling constants are reported in Hertz (Hz), spectral splitting partners are designed as follow: singlet (s); doublet (d); triplet (t); multiplet (m). Mass spectra were obtained with a Schimadzu GCS-QP 1000 EX spectrometer at 70 ev. The IR spectra were recorded with a Philips Infracord Spectro-photometer Model PU9712 in KBr discs. Elemental analyses were performed at the Microanalytical Laboratory of the National Research Centre.

3. Results and Discussion

3.1. Chemistry

2-Methyl-1*H*-benzimidazole-5-carboxylic acid, **1**, was prepared from 3,4-diaminobenzoic acid with acetic acid in hydrochloric acid according to Philips' method [19,20]. Treatment of compound **1** with ethanol and sulfuric acid afforded the ester **2** [21] which was nitrated to yield the 6(5)nitro derivative **3** [22] in which the nitro group was reduced using ferrous sulfate and hydrochloric acid to yield the 6(5)amino hydrochloride derivative **4**. The ortho position of the nitro or amino group vis-à-vis the ester group was proved by ¹H-NMR as it did not show any meta coupling when the singlets corresponding to H₄ and H₇ were expanded.

Hydrolysis of the ester group of **3** was accomplished by refluxing in 10% sodium hydroxide to afford 5(6)-carboxylic acid derivative **(5)**. The acid hydrazides **6(a, b)** were formed by the reaction of the esters **2** or **3** with hydrazine hydrate. (Scheme 1).

The formation of a dihydrooxadiazole-2-thione ring at the 5(6) position of 2-methylbenzimidazole was achieved by the

reaction of the hydrazides **6a** [23] or **6b** with carbon disulfide in potassium hydroxide to produce compounds 7 and 14 respectively. Sulfonylation took place when compound 7 reacted with methanesulfonyl chloride or 2-nitrobenzene esulfonyl chloride to obtain the thiosulfonothioate derivatives 8 and 9 respectively (Scheme 2). Reaction of chloroacetonitrile or 2-chloromethylbenzimidazole in pyridine to produce the 1,3,4-oxadiazole-2-thio derivatives 10 and 11, respectively. Stirring compound 7 with dibromoethane or diiodomethane in a molar ratio of 2:1 with anhydrous potassium carbonate in DMF yielded the bis compounds 12 and 13, respectively, (Scheme 3).

Similarly compound 14 reacted with chloroacetonitrile to produce the thioacetonitrile derivative, 15, which led to the aldol condensation products 16 upon it's reaction with salicylaldehyde. The iminopyran 17 resulted from the condensation of 15 with 2,4-dihydroxybenzaldehyde with subsequent addition of the OH on cyano group (Scheme 4).

Dehydrochlorination reaction of compounds 7 and 14 took place selectively on the thiol group of oxadiazole moiety by using equimolar reagents which was proved from the presence of NH of benzimidazole moiety as revealed from the IR and the ¹H-NMR spectra of the products.

3.2. The cytotoxicity

The cytotoxicity of synthesized compounds and Mitomycin C was tested using the AlamarBlue assay [10] in breast cancer cell line MCF-7 and lung cancer cell line A549 (Table 1). Compound 1 did not show cytotoxity at the highest concentration examined (100 μ M) against both cell lines, whereas its ethyl ester derivative (2) was cytotoxic against MCF-7 (IC₅₀ = 62μ M). Compounds 3, 5, 6 (a, b) did not exhibit cytotoxity. Most of the compounds bearing the 5-thio-1,3,4-oxadiazol-2-yl group at the 5th position of the benzimidazole ring have moderate growth inhibitory effects as compounds 7 (IC₅₀ = 21 μ M and 24 μ M), **11** (IC₅₀ = 26 μ M and 21 μ M), **12** (IC₅₀ = 19 μ M and 22 μ M), **13** (IC₅₀ = 37 μ M and 64 μ M), compounds 15 and 17 (IC₅₀ = 48 μ M and 24 μ M) and 16 (IC₅₀ = 20 μ M and 24 μ M) against both MCF-7 and A549 cell lines respectively. Interestingly compound 9 exhibited potent cytotoxic effect against the two cell lines (IC₅₀ = 1.2 μ M and 1.9 μ M). However some exceptions (e.g. inactive compounds 8, 10 and 14) were noted.

Table 1. Cytotoxicity of the synthesized compounds against MCF-7 and A549 cell lines using the AlamarBlue assay [10].

Compound	IC50 for MCF-7 Cells (µM)	IC ₅₀ for A549 cells (µM)
1	> 100	> 100
2	62±18	>100
3	> 100	> 100
4	Nda	Nda
5	> 100	> 100
6a	> 100	> 100
6b	> 100	> 100
7	21±3	24±5
8	>100	>100
9	1.2±0.1	1.9±0.1
10	> 100	> 100
11	26±5	21±3
12	19±3	22±2
13	37±8	64±16
14	>100	>100
15	48±28	24±3
16	20±0.1	24±7
17	48±2.8	24±3
Mitomycin-C	0.2 ± 0.07	0.4 ± 0.1

^a Not determined due to limited solubility in DMSO or aqueous solutions. IC50:The compound concentration for which the growth of treated cells from time₀ was only 50%

On the basis of above screening, esterification of 2-methyl-1H-benzimidazole-5-carboxylic acid, 1, gave compound 2 of moderate cytotoxic effect, whereas nitration of compound 2 to form 3 reduced the cytotoxicity. Formation of the 5-(5-thio-

1,3,4-oxadiazol-2-yl) group led to an increase in the growth inhibitory effects on these two cell lines, where compound 9 showed potent activity. Whereas, compounds 7, 11-13, and 15-17 showed moderate activity. The activity of these compounds is relatively insensitive to the nature of the 1,3,4-oxadiazole-2thio substituent; however, some exceptions (e.g., inactive compounds 8, 10, 14) were found.

In conclusion, nitration of ethyl 2-methyl-1Hbenzimidazole-5-carboxylate took place selectively at position-6. Oxadiazole-2-thione ring at the 5(6) position of 2methylbenzimidazole was performed by the reaction of the hydrazides (6a, b) with carbon disulfide. Dehydrochlorination and sulphonation reactions of compounds 7 and 14 took place selectively on the thiol group of oxadiazole moiety. The incorporation of 1,3,4-oxadiazole ring carrying 2-nitrophenyl group in its side chain to 2-methyl-1H-benzimidazole into the 5(6)-position was successful to increase the cytotoxic effect of the starting material. The reason of this may be the lipophilicity of the phenyl group together with the influence of the nitro group as a hydrogen bond acceptor.

Acknowledgements

We thank the US-Egypt Joint Science and Technology Board Fund, Administered through the USDA (BI09-002-015).

References

- [1]. Boiani, M.; Gonzalez, M. Mini-Rev. Med. Chem. 2005, 5, 409.
- Hori, A.; Imaeda, Y.; Kubo, K.; Kusaka, M. Cancer Lett. 2002, 183, 53.
- [2]. [3]. Abdel-Mohsen H. T.; Ragab F. A. F.; Ramla M. M.; Diwani H. I. Eur. J. Med. Chem, 2010, 45, 2336-2344.
- [4]. Velaparthi U.; Liu P.; Balasubramanian B.; Carboni J.; Attar R.; Gottardis M.; Li A.; Greer A.; Zoeckler M.; Wittman M. D.; Vyas D. Bioorg. Med. Chem. Lett. 2007, 17, 3072-3076.
- Pagano M. A.; Andrzejewska M.; Ruzzene M.; Sarno S.; Cesaro L.; Bain [5]. J.; Elliott M.; Meggio F.; Kazimierczuk Z.; Pinna L.A. J. Med. Chem. 2004, 47.6239-6247.
- Pagano M. A.; Meggio F.; Ruzzene M.; Andrzejewska M.; Kazimierczuk [6]. Z.; Pinna L. A. Biochem. Biophys. Res. Commun. 2004, 321, 1040-1044.
- [7]. Neff D. K.; Lee-Dutra A.; Blevitt J. M.; Axe F. U.; Hack M. D.; Buma J. C.; Rynberg R; Brunmark A.; Karlsson L.; Breitenbucher G. Bioorg. Med. Chem. Lett. 2007, 17, 6467-6471.
- Arienti K. L.; Brunmark A.; Axe F. U.; McClure K.; Lee A.; Blevitt J.; Neff [8]. D. K.; Huang L.; Crawford S.; Pandit C. R.; Karlsson L.; Breitenbucher J. G. J. Med. Chem. 2005, 48, 1873-1885.
- Hajduk J. P.; Boyd S.; Nettesheim D.; Nienaber V.; Severin J.; Smith R.; [9]. Davidson D.; Rockway T.; Fesik S. W. J. Med. Chem. 2000, 43, 3862-3866.
- [10]. Kumar D.; Jacob M. R.; Reynolds M. B.; Kerwin S. M. Bioorg. Med. Chem. 2002, 10, 3997-4004
- Aboraia A. S.; Abdel-Rahman H. M.; Mahfouz N. M.; EL-Gendy M. A., [11]. Bioorg. Med. Chem. 2006, 14, 1236-1246.
- El Naem Sh. I.; El-Nzhawy A. O.; El-Diwani H .I.; Abdel Hamid A. O. [12]. Arch Pharm. Pharm. Med. Chem. 2003, 1, 7-17.
- [13]. Ramla M. M.; Omar M. A.; Tokuda H.; El-Diwani H. I. Bioorg. Med. Chem. 2007, 15, 6489-6496.
- Ramla M. M.; Omar M. A.; EL-Khamry A. M. M.; El-Diwani H. I. Bioorg. [14]. Med. Chem. 2006, 14, 7324-7332.
- Rostom S. A. F.; Shalaby M. A.; El-Demellawy M. A. Eur. J. Med. Chem. [15]. 2003. 38. 959-974.
- Loetchutinat C.; Chau F.; Mankhetkorn S. Chem. Pharm. Bull. 2003, 51, [16]. 728-730
- [17]. Kumar D.; Sundaree S.; Johnson E. O.; Shah K. Bioorg. Med. Chem. Lett. **2009**, *19*, 4492–4494
- Guimaraes C. R .W.; Boger D. L.; Jorgensen W .L. J. Am. Chem. Soc. [18]. 2005, 127, 17377 -17384.
- [19]. Phillips A. M. J. Chem. Soc. 1928, 2393-2399.
- [20]. Yamasaki N.; Imoto T.; Murai Y.; Hiramura T.; Oku T.; Sawada K. PCT
- Int. Appl. WO 9724334: Chem. Abst. 127 (1997) 135799. [21]. Blackburn W.; Danzig M.; Hubinger H.; Soisson D.; Schultz H. P., J. Org. Chem. 1961, 26 (8), 2805-2809.
- Galal S. A.; Hegab K. H.; Kassab A. S.; Rodriguez M. L.; Kerwin S. M.; El-[22].
- Khamry A. A.; El Diwani H. I. *Eur. J. Med. Chem.* **2009**, *44*,1500-1508. Labouta I. M.; Hassan A. M. M.; Aboulwafa O. M.; Kader O.; Monatsh. [23]. Chem. 1989, 120 (6-7), 571-574.