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Scheme	1	
	
	

	
	

Scheme	2	
	
	
Elemental	 analysis	 was	 conducted	 using	 a	 Perkin	 Elmer	

2400	Series‐11	CHN	analyzer.	X‐ray	crystallographic	data	were	
recorded	 on	 a	 Bruker	 SMART	 APEXII	 CCD	 area‐detector	
diffractometer	using	graphite	monochromated	MoKα	radiation	
(λ	=	0.71073	Å)	at	100	K.	The	data	were	collected	and	reduced	
using	 APEX2	 and	 SAINT	 programs.	 The	 structure	 of	 all	
compounds	 was	 solved	 using	 the	 SHELXS‐97	 program	
package,	 and	 refined	 using	 the	 SHELXL‐97	program	package.	
All	 non‐hydrogen	 atoms	 were	 anisotropically	 refined.	 The	
molecular	graphics	were	created	using	SHELXTL‐97	[26].	
	
2.2.	Nuclease	activity	assay	
	

The	 nuclease	 activity	 of	 compound	 1	 and	 2	 to	 cleave	
pBR322	 plasmid	 DNA	 was	 studied	 using	 agarose	 gel	
electrophoresis	 technique	 in	 Tris/EDTA	 buffer	 solution.	 The	
samples	were	prepared	by	mixing	appropriate	quantities	from	
DNA,	 compound	 and	 H2O2.	 Then	 incubated	 at	 37	°C	 for	 2	h,	
treated	with	 loading	dye,	and	electrophoresed	 for	1	h	at	50	V	
on	1%	agarose	gel	consisting	of	12	lanes:	lane	1,	pBR322	DNA	
(0.025	µM);	lane	2,	DNA	(0.025	µM)	+	compound	(6	µM);	lane	
3,	DNA	(0.025	µM)	+	H2O2	(4.5	µM);	lane	4,	DNA	(0.025	µM)	+	
H2O2	(4.5	µM)	+	compound	(1	µM);	 lane	5,	DNA	(0.025	µM)	+	
H2O2	(4.5	µM)	+	compound	(2	µM);	 lane	6,	DNA	(0.025	µM)	+	
H2O2	(4.5	µM)	+	compound	(3	µM);	 lane	7,	DNA	(0.025	µM)	+	
H2O2	(4.5	µM)	+	compound	(3.5	µM);	lane	8,	DNA	(0.025	µM)	+	
H2O2	(4.5	µM)	+	compound	(4	µM);	 lane	9,	DNA	(0.025	µM)	+	
H2O2	(4.5	µM)	+	compound	(4.5	µM);	lane	10,	DNA	(0.025	µM)	
+	H2O2	(4.5	µM)	+	compound	(5	µM)	and	lane	11,	DNA	(0.025	
µM)	 +	 H2O2	 (4.5	 µM)	 +	 compound	 (6	 µM).	 The	 gel	 was	 then	
stained	 with	 ethidium	 bromide	 before	 being	 photographed	
under	UV	light.	The	results	were	controlled	using	1	kbp	ladder	
DNA	(lane,	L).	
	
2.3.	General	procedure	for	the	synthesis	of	compound	1	and	
2	
	

A	 solution	 of	 the	 corresponding	 aldehyde	 in	 ethanol	 (20	
mL)	 was	 added	 to	 an	 ethanolic	 solution	 (20	 mL)	 of	
thiosemicarbazide	 (5.48	 mmol)	 or	 4‐ethyl‐3‐thiosemicar‐
bazide	 (4.19	 mmol).	 The	 resulting	 yellow	 solution	 was	
refluxed	 with	 stirring	 for	 2	 h	 (Scheme	 1).	 The	 product	 was	
isolated	 by	 filtration,	 washed	 with	 ethanol	 and	 dried.	 Plate	
colorless	 and	 needle	 yellow	 were	 obtained	 by	 slow	
evaporation	of	DMF	for	compound	1	and	2,	respectively.		

(E)‐2‐(3‐Ethoxy‐2‐hydroxybenzylidene)hydrazinecarbo	
thioamide	(1):	Yield:	79%.	M.p.:	181‐183	°C.	FT‐IR	(KBr,	ν,	cm‐

1):	3317	(OH),	1609	(C=N),	1550	(CaroO),	1275	(C=S).	1H	NMR	
(500	MHz,	 DMSO‐d6,	 δ,	 ppm):	 1.37	 (t,	 3H,	 CH3),	 4.04	 (q,	 2H,	
CH2),	6.57	(t,	1H,	Ar‐H),	6.91	(d,	1H,	Ar‐H),	7.50	(d,	1H,	Ar‐H),	
7.87	 (s,	 1H,	NH2),	 8.03	 (s,	 1H,	NH2),	 8.41	 (s,	 1H,	 CH=N),	 9.13	
(br,	1H,	OH),	11.40	(s,	1H,	N‐NH).	13C	NMR	(125	MHz,	DMSO‐d6,	
δ,	ppm):	14.50	(CH3),	64.15	(CH2),	114.06‐146.17	(C‐Aromatic),	
146.95	 (C=N),	 177.51	 (C=S),	 Anal.	 calcd.	 for	 C10H13N3O2S:	 C,	
50.19;	H,	5.48;	N,	17.56.	Found:	C,	50.17;	H,	5.48;	N,	17.52%.	
UV‐Vis	(DMSO,	λmax,	nm):	295,	312.	

(E)‐N‐Ethyl‐2‐((2‐hydroxynaphthalen‐1‐yl)	 methylene)	
hydrazinecarbothioamide	 (2):	 Yield:	 90%.	 M.p.:	 213‐215	 °C.	
Anal.	calcd.	for	C14H15N3OS:	C,	61.51;	H,	5.53;	N,	15.37.	Found:	
C,	61.43;	H,	5.46;	N,	15.35%.	FT‐IR	(KBr,	ν,	cm‐1):	3405	(OH),	
3149	 (N‐NH),	1600	 (C=N),	1537	 (CaroO),	1264	 (C=S).	 1H	NMR	
(500	MHz,	DMSO‐d6,	 δ,	 ppm):	1.18	 (t,	 3H,	CH3),	3.62	 (dd,	2H,	
CH2),	7.22	(d,	1H,	Ar‐H),	7.39	(t,	1H,	Ar‐H),	7.57	(t,	1H,	Ar‐H),	
7.85	 (dd,	 2H,	 Ar‐H),	 8.38	 (bt,	 1H,	 CS‐NH),	 8.46	 (d,	 1H,	 Ar‐H),	
9.06	 (s,	 1H,	 CH=N).	 13C	 NMR	 (125	 MHz,	 DMSO‐d6,	 δ,	 ppm):	
14.49	(CH3),	30.62	(CH2),	109.77‐142.61	(C‐aromatic),	156.30	
(C=N),	177.42	(C=S);	UV‐Vis	(DMSO,	λmax,	nm):	320,	330,	370.	
	
3.	Results	and	discussion	
	
3.1.	Synthesis	
	

The	 (E)‐2‐(3‐ethoxy‐2‐hydroxybenzylidene)hydrazine	
carbothioamide	(1)	and	(E)‐N‐ethyl‐2‐((2‐hydroxynaphthalen‐
1‐yl)methylene)hydrazinecarbothioamide	 (2)	 were	 prepared	
by	 the	 condensation	 reaction	 of	 3‐ethoxy‐2‐hydroxybenz‐
aldehyde	 and	 thiosemicarbazide	 or	 2‐hydroxy‐1‐naphthalde‐
hyde	 and	 4‐ethyl‐3‐thiosemicarbazide	 (Scheme	 1).	 The	 com‐
pounds	 may	 exist	 in	 two	 tautomeric	 forms,	 either	 thione	 or	
thiol	 form	 (Scheme	 2).	 The	 compounds	 are	 air	 stable	 and	
soluble	in	DMF,	DMSO,	and	rare	soluble	in	H2O.	
	
3.2.	FT‐IR	analysis	
	

The	bands	appeared	at	3405	and	3149	cm‐1	are	attributed	
to	 the	 ν(OH)	 and	ν(N‐NH)	 for	 compound	2,	 respectively.	 The	
imino	group	(C=N)	for	compound	2	gave	a	band	at	1600‐1609	
cm‐1.	 The	 strong	 band	 observed	 at	 1550	 and	 1537	 cm‐1	 is	
attributed	to	ν(Caro	O)	for	compound	1	and	2,	respectively.	The	
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Table	1.	Crystal	data	and	refinement	parameters	for	compounds	1	and	2.	
Parameter	 Compound	1	 Compound	2	
Chemical	formula	 C10H13N3O2S C14H15N3OS
Formula	weight	 239.30	 273.36
Crystal	system	 Monoclinic	 Monoclinic	
Crystal	description	 Plate	colorless	 Needle	yellow	
Space	group	 P21/c	 P21	
a	(Å)	 12.8547(5)	 9.2934(14)	
b	(Å)	 5.9945(2) 5.0115(8)
c	(Å)	 16.0739(7) 14.736(2)
α	(°)	 90	 90
β	(°)	 100.494(2) 103.620(3)
γ	(°)	 90	 90
Volume	(Å3)	 1217.90(8) 667.01(17)
Z	 4	 2
Dcalc	(g/cm3)	 1.305	 1.361	
Crystal	size	(mm)	 0.07	×	0.11	×	0.49	 0.03	×	0.09	×	0.50	
Temperature	(K)	 100	 100
Total	data	 16551	 7884	
Unique	data	 3589	 3684
Rint	 0.043	 0.038
Observed	data	[I>2σ(I)]	 2785	 3196
R1	 0.0478	 0.0401
wR2	 0.1025	 0.0971
S	 1.04	 1.05
	
Table	2.	Bond	lengths	for	compound	1	and	2.	
Atom	 Atom	 Length,	Å	 		 Atom	 Atom	 Length,	Å	
Compound	1	
S1	 C8	 1.7017(16) C1 C6 1.391(2)	
O1	 C1	 1.3658(17) C1 C2 1.409(2)	
O2	 C2	 1.3675(18)	 		 C2	 C3	 1.386(2)	
O2	 C9	 1.4450(18)	 		 C3	 C4	 1.405(2)	
N1	 C7	 1.2845(19)	 		 C4	 C5	 1.379(2)	
N1	 N2	 1.3795(17)	 		 C5	 C6	 1.408(2)	
N2	 C8	 1.3470(19) C6 C7 1.460(2)	
N3	 C8	 1.327(2)	 C9 C10 1.507(2)	
Compound	2	
S1	 C12	 1.6856(19)	 		 C3	 C4	 1.419(3)	
O1	 C1	 1.355(2)	 		 C4	 C5	 1.423(3)	
N1	 C11	 1.296(2)	 		 C4	 C9	 1.432(2)	
N1	 N2	 1.379(2)	 C5 C6 1.372(3)	
N2	 C12	 1.357(2)	 C6 C7 1.412(3)	
N3	 C12	 1.339(2)	 C7 C8 1.371(3)	
N3	 C13	 1.464(3)	 C8 C9 1.420(2)	
C1	 C10	 1.403(2)	 C9 C10 1.437(3)	
C1	 C2	 1.411(3)	 C10 C11 1.453(3)	
C2	 C3	 1.368(3)	 		 C13	 C14	 1.520(2)	
		
Table	3.	Bond	angles	for	compound	1	and	2.	
Atom	 Atom	 Atom	 Angle,	°	 		 Atom	 Atom	 Atom	 Angle,	°	
Compound	1	
C2	 O2	 C9	 117.59(12) C5 C4 C3 120.98(14)	
C7	 N1	 N2	 115.06(13)	 		 C4	 C5	 C6	 120.29(14)	
C8	 N2	 N1	 120.20(13) C1 C6 C5 118.82(13)	
O1	 C1	 C6	 119.52(13)	 		 C1	 C6	 C7	 119.27(13)	
O1	 C1	 C2	 119.69(13)	 		 C5	 C6	 C7	 121.89(13)	
C6	 C1	 C2	 120.78(13)	 		 N1	 C7	 C6	 120.92(13)	
O2	 C2	 C3	 126.39(14) N3 C8 N2 117.09(14)	
O2	 C2	 C1	 113.67(13) N3 C8 S1 123.86(12)	
C3	 C2	 C1	 119.93(14) N2 C8 S1 119.05(11)	
C2	 C3	 C4	 119.19(14) O2 C9 C10 107.23(14)	
Compound	2	
C11	 N1	 N2	 115.99(14) C8 C7 C6 121.40(17)	
C12	 N2	 N1	 120.78(15) C7 C8 C9 121.31(17)	
C12	 N3	 C13	 124.43(17) C8 C9 C4 117.53(17)	
O1	 C1	 C10	 122.55(17) C8 C9 C10 123.23(16)	
O1	 C1	 C2	 115.94(16) C4 C9 C10 119.23(15)	
C10	 C1	 C2	 121.50(17) C1 C10 C9 118.75(16)	
C3	 C2	 C1	 119.91(16) C1 C10 C11 120.58(17)	
C2	 C3	 C4	 121.37(18)	 		 C9	 C10	 C11	 120.64(15)	
C3	 C4	 C5	 121.33(17)	 		 N1	 C11	 C10	 122.02(16)	
C3	 C4	 C9	 119.23(17)	 		 N3	 C12	 N2	 116.47(16)	
C5	 C4	 C9	 119.44(16) N3 C12 S1 123.33(15)	
C6	 C5	 C4	 121.48(19) N2 C12 S1 120.20(13)	
C5	 C6	 C7	 118.83(19) N3 C13 C14 108.89(18)	
	
	

The	 compound	 1	 which	 was	 isolated	 from	 the	 DMF	
solution	show	the	syn	configurations	of	O1	atom	with	respect	
to	O2	 atom	 (torsion	 angle:	O1‐C1‐C2‐O2	=	0.16(19)°)	 and	C2	
atom	with	 respect	 to	 C5	 atom	 (torsion	 angle:	 C1‐C2‐C3‐C5	 =	
0.6(2)°),	whereas	in	the	reported	P21	form,	the	corresponding	

atoms	of	molecule	B	show	the	anti	configurations	of	O3	atom	
with	respect	 to	O4	(torsion	angle:	O3‐C11‐C12‐O4	=	 ‐1.1(7)°)	
and	 C12	 atom	 with	 respect	 to	 C15	 (torsion	 angle:	 C12‐C13‐
C14‐C15	=	‐0.8(8)°).		
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