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1050)	 using	 CuKα	 radiation	 and	 a	 Ni	 filter.	 The	 diffraction	
pattern	were	recorded	in	the	range	of	5	to	90	[2Θ],	with	a	step	
size	 of	 0.04/[2Θ]	 and	 2s/step	 speed.	 The	 percent	 of	
crystallinity	 was	 determined	 from	 XRD	 data	 and	 it	 was	
calculated	by	dividing	the	total	area	of	crystalline	peaks	by	the	
total	 area	 under	 the	 diffraction	 curve	 (crystalline	 plus	
amorphous	 peaks)	 [10]	 using	 Automatic	 Powder	 Diffraction	
Philips	software.	The	real	area	of	the	crystalline	peaks	and	the	
amorphous	 peak	 can	 be	 determined	 from/by	 a	 computer	
software	package	performing	a	mathematical	deconvolution	of	
the	 peaks.	 The	 percentage	 of	 the	 crystalline	 polymer	 can	 be	
determined	from	Equation	1.		
	
%	Crystallinity ൌ

୰ୣୟ	୳୬ୢୣ୰	ୡ୰୷ୱ୲ୟ୪୪୧୬ୣ	୮ୣୟ୩ୱ

୭୲ୟ୪	ୟ୰ୣୟ	୳୬ୢୣ୰	ୟ୪୪	୮ୣୟ୩ୱ
		100ݔ 	 (1)	

	
For	 the	 cross‐section	 observation,	 the	 microporous	

membrane	 was	 freeze‐fractured	 in	 liquid	 nitrogen	 and	 then	
sputter	coated.	 Imaging	 the	surface	was	performed	with	SEM	
electron	microscopy	(Phillips,	515	SEM).		

Thermal	 stability	 of	 membranes	 was	 monitored	 by	
thermogravimetric	 analysis	 (TGA)	 and	 thermogravimetric	
analysis/differential	 thermal	 analysis	 (TGA/DTG)	 (Netzsch	
STA	 409C	 3F).	 TGA	measurements	were	 carried	 out	 under	 a	
nitrogen	atmosphere	at	heating	rate	of	15	°C/min	from	25	 to	
800	 °C.	 The	 samples’	 weight	 was	 in	 the	 range	 of	 5‐10	 mg.	
Nitrogen	 was	 used	 as	 a	 carrier	 gas	 with	 flow	 rate	 of	 25	
mL/min.		

Surface	 studies	 were	 carried	 out	 using	 a	 Fourier	 Trans‐
form	Infrared	Spectroscopy/Attenuated	Total	Reflectance	(FT‐
IR/ATR)	with	FT‐IR	spectrometer	 (Bruker,	TENSOR	27)	 from	
ATR	accessory	(SPECAC).	Measurement	resolution	was	4	cm‐1.		

The	porous	structure	was	determined	by	low	temperature	
(‐196	 °C)	 nitrogen	 adsorption	 measurements	 carried	 out	 on	
the	 Accelerated	 Surface	 Area	 and	 Porosimetry	 system	model	
2010	 made	 by	 Micromeritics,	 using	 200‐300	 mg	 of	 sample	
with	the	grain	size	fractions	between	0.1	and	0.2	mm.	Prior	to	
nitrogen	 adsorption,	 all	 samples	were	outgassed	 at	 623	K,	 at	
0.4	Pa	until	a	constant	mass	was	reached.	Both	adsorptive	and	
desorptive	 branch	 of	 the	 isotherm	was	 taken	 in	 the	 range	 of	
p/p0	0‐1.		

For	the	study	of	liquid	phase	uptake,	small	pieces	were	cut	
off	 from	dry	membranes.	Once	 carefully	 dried	 and	weighted,	
they	 were	 immersed	 in	 a	 container	 with	 pure	 propylene	
carbonate	 (anhydrous,	 99.7%,	 Aldrich).	 At	 predefined	
moments	 in	 time,	 the	membrane	 pieces	were	 removed	 from	
the	 container,	 blotted	 lightly	 from	 the	 excess	 of	 liquid,	
weighted	 and	 immediately	 placed	 again	 in	 the	 container.	
Liquid	 phase	 uptake	 was	 followed	 as	 a	 result	 of	 swelling	
membrane	weight	increase:	
	
Membrane	weight	increase	=	(mt‐m0)/m0	×	100	[%]		 (2)	
		
where	m0	 is	 the	weight	of	dry	membrane,	mt	 is	 the	weight	of	
membrane	after	a	given	time	of	swelling.		

The	ionic	conductivity	of	composite	gel	polymer	electroly‐
tes	is	calculated	from:		
	
σ	=	L/(Rb×A)	 	 	 	 	 (3)		

	
where	L	and	A	represent	thickness	and	area	of	the	electrolyte	
specimen,	 respectively.	 Rb	 is	 the	 bulk	 resistance	 of	 the	 gel	
electrolyte	obtained	from	complex	impedance	measurements.		

For	 the	 conductivity	measurements	 gel	 electrolytes	were	
prepared	 by	 immersing	 round	 pieces	 of	 dry	 composite	
membranes	 (10	 mm	 diameter)	 for	 1	 hour	 in	 a	 liquid	
electrolyte	 typical	 for	 Li‐ion	 batteries,	 consisting	 of	 1	 M	
solution	 of	 LiPF6	 (Aldrich	 99.99%)	 in	 1:1	 (w:w)	 mixture	 of	
ethylene	 carbonate	 (EC,	 anhydrous,	 Sigma‐Aldrich	 99%)	 and	
dimethyl	 carbonate	 (anhydrous,	 Sigma‐Aldrich	 99%).	 In	 the	
next	step,	the	round	pieces	of	membranes	swelled	in	the	liquid	

electrolyte	were	placed	in	a	two‐electrode	Swagelok‐type	cell	
with	 stainless	 steel	 electrodes.	 All	 these	 operations	 were	
conducted	 in	 a	 glove	 box,	 in	 dry	 argon	 atmosphere.	 The	
conductivities	were	determined	at	 several	 temperatures	 (10‐
60	°C)	on	the	basis	of	impedance	spectra	obtained	by	means	of	
PARSTAT	 2263	 (Princeton	 Applied	 Research)	 impedance	
analyzer	in	the	frequency	range	of	100	kHz	‐	1	Hz	with	10	mV	
AC	 amplitude.	 Typically,	 each	 measurement	 was	 repeated	
several	 times	 to	 ensure	 good	 reproducibility	 of	 results.	 The	
cells	 were	 thermostated	 during	 measurements	 in	 a	 climatic	
chamber	(Vötsch).		

Activation	 energy	 for	 composite	 polymer	 gel	 electrolytes	
have	been	calculated	from	the	equation:		
		
σ	=	σ0	exp	(‐Ea	/kT)		 	 	 	 (4)	
	
where	 σ0	 is	 the	 pre‐exponential	 factor,	 Ea	 is	 the	 activation	
energy,	T	 is	 the	absolute	temperature	 in	Kelvin	scale	and	k	 is	
the	Boltzmann	constant.		
	
2.2.	Synthesis	
	

The	 poly(vinylidenefluoride‐co‐hexafluoropropylene)	was	
purchased	 from	 Kynar	 Flex,	 Atofina.	 The	 dibutyl	 phthalate	
from	 Merck,	 tetraethyl	 orthosilicate,	 tetrabutyl	 titanate	 and	
acetic	acid	were	from	Alfa	Aesar.	

The	PVdF‐HFP	gels	were	prepared	according	to	a	method	
similar	 to	 the	 so‐called	 Bellcore.	 PVdF‐HFP	 copolymer	 was	
added	 to	 acetone	 together	 with	 dibutyl	 phthalate	 and	
precursor	 of	 inorganic	 fillers.	 Inorganic	 filler	 was	 created	 in	
one	 step	method	with	 the	 formation	 of	 the	membrane	 by	 the	
simultaneous	 hydrolysis	 and	 condensation	 of	 the	
corresponding	alkoxide	precursor	[11].	
	
CH3COOH	+	Si(OEt)4	→	Si(OEt)3(CH3COO)	+	EtOH		 		(5)
	 		
EtOH	+	CH3COOH	→	CH3COOEt	+	H2O	 	 	 		(6)	
	
H2O	+	Si(OEt)3(CH3COO)	→	HOSi(OEt)3	+	CH3COOH	 		(7)	
	
2	HOSi(OEt)3	→	(EtO)3Si‐O‐Si(OEt)3	+	H2O	 	 		(8)	

CH3COOH	+	Ti(OEt)4	→	Ti(Ot‐Bu)3(CH3COO)	+	t‐BuOH	 		(9)	
	
t‐BuOH	+	CH3COOH	→	CH3COOt‐Bu	+	H2O	 																		(10)	
	
H2O	+	Ti(Ot‐Bu)3(CH3COO)	→	HOTi(Ot‐Bu)3	+	CH3COOH						(11)	
	
2	HOTi(Ot‐Bu)3	→	(t‐BuO)3Ti‐O‐Ti(Ot‐Bu)3	+	H2O																			(12)		
	

Such	 a	 synthesis	 strategy	 results	 from	 the	 experiments	
described	in	the	work	for	the	preparation	of	the	gel	systems	of	
the	oxides	and	hydroxides	by	hydrolysis	and	condensation	 in	
anhydrous	solvents	[12,13].	

Tetraethyl	 orthosilicate	 (TEOS)	 was	 used	 as	 a	 source	 of	
silica.	 Tetrabutyl	 titanate	 (Ti(OC4H9)4)	 was	 a	 titanium	 oxide	
source.	The	weight	ratio	of	the	filler	precursor	(as	final	oxide)	
to	the	copolymer	was	1:10.	Acetic	acid	(CH3COOH)	was	added	
to	methanol	(CH3OH)	as	a	hydrolysis	and	condensation	agent.	
Mixtures	were	 stirred	 and	heated	 at	 45	 °C	 for	 several	 hours.	
Each	 solution	was	 cast	 on	 a	 glass	plate,	 covered	with	 a	 Petri	
dish	 and	 left	 for	 slow	 evaporation	 (5	 days).	 The	 resulting	
membranes	were	immersed	in	an	apparatus	for	drying	under	
supercritical	conditions	of	CO2.	The	system	was	maintained	at	
constant	pressure	of	1250psi	and	temperature	of	35	°C	for	6h.	
Next,	the	system	was	slowly	depressurized	for	about	2	h	at	the	
same	 temperature.	 As	 soon	 as	 the	 depressurization	 process	
was	 completed,	 the	 resulting	membranes	were	 collected	 and	
kept	 in	 a	 desiccator	 for	 further	 use.	 The	 resulting	 samples	
were	 named	 respectively:	 PVdF‐HFP,	 PVdF‐HFP‐SiO2,	 PVdF‐
HFP‐TiO2,	PVdF‐HFP‐SiO2‐TiO2.		
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S/cm.	The	highest	conductivity	was	obtained	 for	SiO2,	TiO2,	 a	
binary	filler,	lead	to	lower	conductivity	than	pure	PVdF‐HFP.	It	
is	the	further	evidence	of	the	effect	of	the	membrane	structure	
on	 its	 conductivity	 and	 this	 is	 consistent	 confirmed	by	 other	
observations	[29,30].	

Apparent	 activation	 energies	 have	 been	 calculated	 as	 a	
function	 of	 filler	 using	 the	 Equation	 12.	 Activation	 energies	
and	 room	 temperature	 ionic	 conductivities	 of	 different	
compositions	are	summarized	in	Table	2.	The	minimum	value	
of	Ea	is	0.141eV	for	the	pure	PVdF‐HFP.	There	is	an	increase	in	
Ea	for	a	binary	filler	content.	For	the	rest	of	samples	the	values	
of	Ea	indicate	no	clear	correlation	with	the	filler	content.		
	
Table	2.	The	value	of	activation	energy	as	a	function	of	filler.	
Composite	polymer	gel	electrolyte	 Ea	[eV]	
PVdF‐HFP	 0.141
PVdF‐HFP‐	SiO2	 0.142
PVdF‐HFP‐TiO2	 0.145
PVdF‐HFP‐SiO2‐TiO2	 0.175
	
4.	Conclusions	
	

1. Composite	 polymer‐ceramic	 membranes	 were	 manu‐
factured	 by	 a	 modified	 Bellcore	 procedure,	 in	 which	
dibuthyl	 phthalate	 extraction	 and	 in‐situ	 oxide	
formation	 were	 carried	 out	 simultaneously	 by	 the	
application	of	supercritical	CO2.	

2. XRD	 patterns	 reveal	 that	 crystallinity	 degree	 of	 the	
polymer	matrices	decreased	in	the	presence	of	fillers.	

3. Gel	 electrolytes	 obtained	 by	 activation	 of	 dry	memb‐
ranes	 exhibit	 significant,	 very	 high	 conductivities,	
exceeding	6.06×10‐3	Scm‐1.	

4. The	 obtained	 results	 are	promising	 from	 the	 point	 of	
view	 of	 possible	 application	 in	 Li‐ion	 battery	 techno‐
logies.		

PVdF‐HFP‐SiO2,	 ‐TiO2	 and	 ‐SiO2‐TiO2	 composite	 polymer	
electrolyte	 membranes	 were	 studied	 to	 investigate	 the	 role	
CPD	 and	 inorganic	 filler	 on	 gel	 polymer	 electrolyte.	 The	
addition	 of	 filler	 to	 PVdF‐HFP	 based	 gel	 polymer	 electrolyte	
allowed	to	obtain	microporous	composite	polymer	electrolyte.	
Reduction	in	crystallinity	after	addition	of	inorganic	fillers	and	
their	 interaction	with	 the	polymer	were	established	 from	the	
XRD	 and	 FTIR	 studies.	 Incorporation	 of	 fine,	 well	 dispersed	
oxide	 particles	 prevents	 reorganization	 of	 polymer	 chains,	
resulting	 in	 a	 decrease	 in	 polymer	 crystallinity	 which	 gives	
rise	 to	 an	 increase	 in	 ionic	 conductivity	 and	 stabile	 thermal	
properties	 [30].	Morphological	 study	shows	porous	 structure	
of	 the	membranes	 after	 supercritical	 CO2	 drying	 that	 can	 be	
more	effective	change	of	the	structure	and	ionic	conductivity.	
Based	on	these	results	it	can	be	suggested	that	silica	obtained	
by	 one‐pot	 reaction	 method	 can	 be	 good	 filler	 for	 polymer	
electrolyte	membranes.		
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