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A quantitative structure activity relationship (QSAR) model for a series of N-(1-benzyl-3,5-
dimethyl-1H-pyrazole-4-yl) benzamide derivatives having autophagy inhibitory activities as 
potent anticancer agents was developed by the multiple linear regressions (MLR) method. 
In this study, previous compounds were used in the model development were divided into 
a set of fifteen compounds as training set and set of four compounds as test set. A model with 
high prediction ability and high correlation coefficients was obtained. This model showed      
r = 0.968, r2 = 0.937 and Q2 = 0.880, the QSAR model was also employed to predict the 
experimental compounds in an external test set, and to predict the activity of a new designed 
set of 3,5-dimethyl-4-substituted-pyrazole derivatives (1-15), result showed that compound 
3 has the most promising inhibition activity (EC50 = 0.869 μM) against human pancreatic 
ductal adenocarcinoma cell MIA PaCa-2 compared to the reference chloroquine with (EC50 = 
14 μM). Thus, the model showed good correlative and predictive ability. Docking studies was 
performed for designed compounds, docking analysis showed the best compound 1 with 
high docking affinity of -24.8616 kcal/mol. 
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1. Introduction 
 

Autophagy is a conserved intracellular degradation process 
that delivers substrates including bulk cytoplasm, organelles, 
aggregate-prone proteins, and infectious agents to lysosomes 
[1,2], it is induced under various conditions of cellular stress, 
which prevents cell damage and promotes survival in the event 
of energy or nutrient shortage. There are three types of 
autophagy: macroautophagy [3], microautophagy [4] and 
Chaperone-mediated autophagy (CMA) [5]. The molecular 
mechanism of autophagy involves several conserved ATG 
(autophagy-related) proteins, various stimuli lead to the 
formation of the phagophore, the elongation of the phagophore 
results in the formation of the characteristic double-membrane 
autophagosome. The autophagosome fuses with the lysosome 
and release its inner compartment into lysosomal lumen, after 
fusion, a series of acid hydrolases are involved in degradation 
of the sequestered cytoplasmic cargo. The small molecules 
resulting from the degradation, particularly amino acids are 
transported back to the cytosol for protein synthesis and 

maintenance of cellular functions under starvation conditions 
[6-9]. 

In cancer, the role of autophagy is highly complex and 
dependent on cancer type and stage [10], autophagy has been 
shown to act as a tumor suppressing to constrains tumor 
initiation in normal tissue, some tumor in last stage of 
progression rely on autophagy for tumor promotion and 
maintenance [11-13]. Therefore, targeting autophagy and 
discovering autophagy inhibitions and its modulation has 
considerable potential as anticancer agents used in therapeutic 
approach, especially in pancreatic ductal adenocarcinoma 
(PDAC), which it represents a viable approach to fight 
pancreatic cancer. 

Quantitative structure activity relationships is a 
mathematical equation relating chemical structure with its 
physical, chemical and biological effect [14], QSAR model is 
useful for understanding the factors controlling activity and for 
designing new compounds for therapeutic areas [15-17], it 
requires a compound set that has been tested against an 
identified molecular target, cell tissue, or even microorganism,  
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Table 1. Biological activities and structures of N-(1-benzyl-3,5-dimethyl-1H-pyrazole-4-yl) benzamide compounds obtained from literature [22]. 
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Compound R1 R2 R3 EC50 pEC50 

1 H H H 10.00 5.000 
2 H C(O)NH2 H 9.20 5.036 
3 H H C(O)NH2 42.00 4.377 
4 H C(O)NHMe H 6.20 5.208 
5 H C(O)N(Me)2 H 6.40 5.194 
6 H C(O)NHEt H 11.00 4.959 
7 H C(O)NHiPr H 8.90 5.051 
8 H C(O)NHPh H 6.40 5.194 
9 - -  14.00 4.854 
10 H Me H 6.20 5.208 
11 OMe H H 8.50 5.071 
12 H OMe H 6.20 5.208 
13 H H OMe 8.00 5.097 
14 Cl H H 6.30 5.201 
15 H Cl H 5.90 5.229 
16 H H Cl 4.20 5.377 
17 H CF3 H 2.30 5.638 
18 H H CF3 0.80 6.097 
19 Me H CF3 0.62 6.208 
Chloroquine - - - 14.00 4.854 
 
under the same experimental conditions and possesses the 
minimum variance in the observed responses [18]. Once a 
suitable dataset has been selected, the main step of modeling 
requires molecular/physicochemical properties, followed by 
variable selection, model generation from different algorithms 
and validation process using internal and external dataset [19-
21]. 

The current work aimed to obtain a QSAR model of N-(1-
benzyl-3,5-dimethyl-1H-pyrazole-4-yl) benzamide derivatives 
in order to predict biological activity against human pancreatic 
ductal adenocarcinoma cell MIA PaCa-2, validate the predictive 
ability of the developed model through validation methods, 
calculate the statistical parameter to prove quality of model, 
and use the obtained model to predict the biological activity 
against human pancreatic ductal adenocarcinoma cell MIA 
PaCa-2 on a set of designed compounds (1-15). And conducting 
docking studies for all designed compounds (1-15) and 
selected protein 6s6a. 
 
2. Experimental 
 
2.1. QSAR studies 
 
2.1.1. Data set  
 

A data set comprised of nineteen N-(1-benzyl-3,5-dimethyl-
1H-pyrazole-4-yl) benzamide derivatives was used in the 
present study. All compounds and associated data were 
obtained from literature [22]. The biological activity data were 
reported as (EC50) values half maximal effective concentration 
in MIA PaCa-2a pancreatic cancer line. The (EC50) values were 
converted into (pEC50) using the formula: pEC50 = -log EC50, 

values along with the N-(1-benzyl-3,5-dimethyl-1H-pyrazole-4-
yl) benzamide derivatives structures can be found on Table 1. 

Chemical structures of the compounds were done using the 
ACD/ChemSketch v14.01 software (ACD, Copyright 1994-2013 
Advanced Chemistry Development, Inc.), molecular modeling 
was performed using the Molecular Operating Environment 
software package (MOE, v2009.10; Chemical Computing Group 
Inc.). The QSAR model was derived from nineteen molecules 
which were randomly divided into training set of fifteen 
molecules and test set of four molecules was used to validate 
QSAR model. 
 
2.1.2. Molecular descriptors generation 
 

Different molecular descriptors (physicochemical proper-
ties) [23] were calculated for each molecule after the low 
energy conformer of structures were generated, these descript-
tors included electronic, spatial, and structural descriptor were 
calculated using MOE and ACD lab programs. In order to select 
the best subset of descriptors, and avoid difficulties in forming 
QSAR models, hence the predictivity and the generalization of 
the model fail under these conditions, highly correlated 
descriptors were excluded using correlation matrix, the nine 
descriptors used to generate QSAR model denoted as molecular 
weight (MW), molar volume (MV), molar refractivity (Mr), sum 
of atomic polarizabilities (S-aPol), total polar surface area (T-
pSA), density (D), index of refraction (InR), surface tension (ST), 
and Log octanol/water partition coefficient (log P(o/w)) 
reported in Table 2. 
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Table 2. Values of molecular descriptors calculated for training set. 
Compound MW MV Mr S-aPol T-pSA D InR ST Log P(o/w) 
1 411.5050 359.0000 12.4145 67.3338 55.9685 0.9795 1.6070 43.5000 4.8820 
3 454.5300 369.0000 13.2528 71.6626 143.1298 1.0129 1.6310 48.5000 3.8230 
4 468.5570 392.1000 13.7479 74.7562 135.8367 1.0049 1.6160 45.3000 4.2180 
5 482.5840 413.3000 14.1937 77.8498 122.8609 0.9937 1.6050 43.7000 4.4150 
6 482.5840 408.1000 14.2149 77.8498 110.3188 0.9958 1.6100 44.8000 4.5590 
7 496.6110 423.3000 14.6494 80.9434 94.9803 0.9829 1.6060 43.5000 5.0210 
9 474.6050 392.1000 13.8371 78.7570 137.5979 0.9870 1.6160 45.3000 4.5430 
10 482.5840 407.3000 14.1945 77.8498 138.3996 0.9899 1.6110 43.9000 4.5530 
11 498.5830 413.7000 14.3987 78.6518 168.2368 1.0106 1.6060 44.3000 3.9237 
13 498.5830 413.7000 14.3950 78.6518 174.5284 1.0126 1.6060 44.3000 4.1740 
14 503.0020 401.3000 14.2636 76.2694 138.1049 1.0457 1.6230 46.1000 4.8080 
15 503.0020 401.3000 14.2598 76.2694 135.7901 1.0411 1.6230 46.1000 4.8470 
16 503.0020 401.3000 14.2598 76.2694 136.9149 1.0436 1.6230 46.1000 4.8100 
18 536.5540 422.0000 14.3648 77.5204 234.1733 1.0925 1.5860 41.5000 5.1528 
19 550.5810 437.2000 14.8190 80.6140 235.1974 1.0725 1.5830 40.4000 5.4858 
 
Table 3. Comparison of squared correlation coefficients of the models. 
Models r2 
Model 1 0.852 
Model 2 0.835 
Model 3 0.937 
Model 4 0.853 
Model 5 0.896 
  
Table 4. Statistical parameters used for statistical quality of model. 
r r2 Q2 s F RMSE P value 
0.968 0.937 0.880 0.117 192.638 0.109 0.000 
 
Table 5. Experimental and predicted pEC50 for training set and cross validation against human pancreatic cancer cell line (MIA PaCa-2). 
Compound pEC50 exp. pEC50 pred. Residuals CV pred. Residuals 
1 5.0000 5.1001 -0.1001 5.1383 -0.1383 
3 4.3770 4.5695 -0.1925 4.7145 -0.3375 
4 5.2080 4.9679 0.2401 4.9343 0.2737 
5 5.1940 5.1165 0.0775 5.1021 0.0919 
6 4.9590 5.0095 -0.0505 5.0151 -0.0561 
7 5.0510 5.1412 -0.0902 5.1837 -0.1327 
9 4.8540 4.8826 -0.0286 4.8875 -0.0335 
10 5.2080 5.0816 0.1264 5.0616 0.1464 
11 5.0710 5.0972 -0.0262 5.1141 -0.0431 
13 5.0970 5.1425 -0.0455 5.1541 -0.0571 
14 5.2010 5.2244 -0.0234 5.2324 -0.0314 
15 5.2290 5.1971 0.0319 5.1860 0.0430 
16 5.3770 5.2095 0.1675 5.1538 0.2232 
18 6.0970 6.1753 -0.0783 6.2502 -0.1532 
19 6.2080 6.2160 -0.0080 6.2228 -0.0148 
 
pEC50 = 1.63148 + 0.60842 × log P(o/w) - 0.01141 × InR + 0.00547 × T-pSA         (1) 
 
pEC50 = -5.14822 + 0.39163 × log P(o/w) + 0.00728 × MV + 5.51570 × D       (2) 
 
pEC50 = 3.16492 + 0.12375 × log P(o/w) + 6.97797 × D - 0.12652 × ST       (3) 
 
pEC50 = 1.85725 + 0.61188 × log P(o/w) + 0.00560 × T-pSA - 0.00363 × S-aPol      (4) 
 
pEC50 = 5.53650 + 0.44173 × log P(o/w) - 0.06791 × ST + 0.00455 × T-pSA       (5) 
 
2.1.3. QSAR model development 
 

The QSAR model were developed from the training set 
compounds where the independent variables molecular 
descriptors and dependent response variable (pEC50) were 
subjected to multiple linear regressions (MLR) analysis, several 
QSAR models were developed. The comparison of squared 
correlation coefficients of the models reported in Table 3. 

The resulting QSAR model Equation (3) exhibited a high 
regression coefficient. The model was justified by statistical 
parameters such as the correlation coefficient (r), squared 
correlation coefficient (r2), cross-validated regression 
coefficient (Q2), standard error of estimate (s), F-test value (F), 
and the root mean squared error (RMSE), and validated using 
random test set compounds Table 4, and was evaluated for the 
robustness of its predictions via the cross-validation coefficient. 
 

2.1.4. Validation of QSAR model 
 

The developed model was validated internally by training 
set compounds using leave-one-out (LOO) cross-validation 
technique. In this technique, one compound is eliminated from 
the data set at random in each cycle and the model is built using 
the rest of the compounds. The model thus formed is used for 
predicting the activity of the eliminated compound. The process 
is repeated until all the compounds are eliminated once. The 
cross-validated regression coefficient (Q2) was calculated. 

External validation was performed in order to determine 
the predictive capacity of the developed model as judged by its 
application for the prediction of test set activity values. 

The observed activities and those calculated by QSAR model 
(Equation 3) for training set and test set were presented in 
Table 5 and 6. 
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Table 6. Predicted pEC50 values of test set 
Compound  pEC50 exp. pEC50 pred. Residuals 
2 5.0360 4.5665 0.4695 
8 5.1940 4.9549 0.2391 
12 5.2080 5.1417 0.0663 
17 5.6380 6.1317 -0.4937 

 
Table 7. Structures and predicted pEC50 values for designed 3,5-dimethyl-4-substituted-pyrazole derivatives against human pancreatic cancer cell line (MIA 
PaCa-2). 
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Table 8. Binding scores and interactions of the docked designed 3,5-dimethyl-4-substituted-pyrazole derivatives (1-15) on the active site of 6s6a. 
Compound S (kcal/mol) Amino acid interaction Type of interaction Length (Å) 
1 -24.8616 ArgA37 

LysA128 
ThrA21 
ThrA42 

π-cation interaction 
π-cation interaction 
Metal complexation (Mg) 
Metal complexation (Mg) 

- 
- 
2.16 
2.22 

2 -22.0658 ArgA37 
LysA128 
ThrA21 
ThrA42 

π-cation interaction 
π-cation interaction 
Metal complexation (Mg) 
Metal complexation (Mg) 

- 
- 
2.16 
2.22 

3 -20.1774 ArgA37 
LysA128 

π-cation interaction 
π-cation interaction 

- 
- 

4 -24.8373 ArgA37 
ThrA21 
ThrA42 

π-cation interaction 
Metal complexation (Mg) 
Metal complexation (Mg) 

- 
2.16 
2.22 

5 -18.9748 ArgA37 
AspA130 

π-cation interaction 
Hydrogen bond  

- 
2.03 

6 -22.5543 ArgA37 
LysA128 

π-cation interaction 
π-cation interaction 

- 
- 

7 -18.0398 ArgA37 
ArgA37 

π-cation interaction 
Hydrogen bond 

- 
3.04 

8 -19.4697 ArgA37 
ArgA37 
LysA128 

π-cation interaction 
π -cation interaction 
π-cation interaction 

- 
- 
- 

9 -20.3244 ArgA37 π-cation interaction - 
10 -22.4642 LysC179 

SerC76  
π-cation interaction 
Hydrogen bond 

- 
3.04 

11 -21.7914 ArgA37 
ArgA37 
LysA128 

π-cation interaction 
Hydrogen bond 
π-cation interaction 

- 
2.97 
- 

12 -21.0138 ArgA37 
LysA128 

π-cation interaction 
π-cation interaction 

- 
- 

13 -24.0026 ArgA37 
LysA128 

π-cation interaction 
π-cation interaction 

- 
- 

14 -22.5484 ArgA37 
LysA128 

π-cation interaction 
π-cation interaction 

- 
- 

15 -18.7338 ArgA37 
LysA128 

π-cation interaction 
π-cation interaction 

- 
- 

 
2.1.5. Predict the activity of designed 3,5-dimethyl-4-
substituted-pyrazole derivatives 
 

Chemical structures of the designed 3,5-dimethyl-4-
substituted-pyrazole derivatives (1-15) were done using the 
ACD/ChemSketch, the developed QSAR model (Equation (3)) 
was used to predict their activity against human pancreatic 
ductal adenocarcinoma cell line MIA PaCa-2. The predicted 
activity expressed as pEC50 along with the structures reported 
in Table 7. 
 
2.2. Molecular docking 
 

Docking is a molecular modelling technique that is used to 
predict how a protein interacts with small molecules (ligands) 
by predicting of the most possible type of interaction, the 
binding affinities, and the orientations of the docked ligands at 
the active site of the target protein. Molecular docking study 
was carried out in order to elucidate which of the designed 3,5-
dimethyl-4-substituted-pyrazole derivatives (1-15) has the 
best binding affinity against the mechanistic (or mammalian) 
target of rapamycin complex 1 (mTORC1). The structure of 
mTORC1 used in the study was obtained from Protein Data 
Bank with PDB code 6s6a, structures of the designed 3,5-
dimethyl-4-substituted-pyrazole derivatives (1-15) were 
prepared and saved as mol files, the prepared compounds were 
docked with prepared structure of 6s6a protein using MOE 
program. The binding score (S) of the complexes and amino acid 
interactions are reported in Table 8.  
 
3. Results and discussion 
 
3.1. QSAR studies 
 

The studied compounds which were an autophagy 
modulator showed a promising role as anticancer agents. In the 
present work, structure activity relationship model was 

developed that could correlate the structural features with 
biological activity. 

The developed model showed squared correlation 
coefficient (r2 = 0.937) which indicates the correlation between 
the activity (dependent variable) the molecular descriptors 
(independent variable) for the training set data, and squared 
cross-validation (Q2 = 0.880) which indicates that the newly 
developed QSAR model has a good prediction. Three molecular 
descriptors denoted as log octanol/water partition coefficient 
(log P(o/w)), density (D), and surface tension (ST) were 
significantly correlated with anticancer activity. It is evident 
from the Equation (3) that among the molecular descriptors, log 
P(o/w) and D are positively correlated, that mean the biological 
activity increases when the values of these descriptors are 
positively increased. On the other hand, the descriptor ST 
negatively correlated with anticancer activity, that mean the 
biological activity decreases when the value of this descriptor is 
increase. Four compounds denoted by (test set) were used as 
external validation for developed QSAR model, and it was found 
that the predicted values through the QSAR model show 
compliance with their experimental values and r2 = 0.990, all 
statistical parameters calculated to evaluate the quality of the 
QSAR model were in suitable range. Figure 1 shows the 
correlation plots of the experimental versus predicted pEC50 
values for training set, cross-validation and test set compounds 
against pancreatic cancer cell line. 
 
3.2. Docking study 
 

Molecular docking study was carried out between the target 
(mTORC1) and designed 3,5-dimethyl-4-substituted-pyrazole 
derivatives (1-15). All compounds were found to inhibit the 
receptor by occupying the active sites of the target (mTORC1). 
The binding affinity values for designed compounds range from 
-24.8616 to -18.0398 kcal/mol as reported in Table 8.  
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(a) 
 (b) 

(c) 
 

Figure 1. Predicted versus experimental pEC50 values of (a) training set, (b) cross validation set, and (c) test set against human pancreatic cancer MIA PaCa-
2. 
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Figure 2. 2D molecular docking model of compounds 1, 4 and 13 with 6s6a. 
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Figure 3. 3D model of the interaction between compounds 1, 4 and 13 with 6s6a. 

 

y = 0.9368x + 0.3292
r² = 0.9368

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4

PE
C 5

0 
Pr

ed

PEC50 Exp

y = 0.9089x + 0.4893
r² = 0.8801

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4

CV
Pr

ed

PEC50 Exp

y = 2.5693x - 8.3391
r² = 0.9896

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7

PE
C 5

0 
Pr

ed

PEC50 Exp



Mohamed et al. / European Journal of Chemistry 11 (3) (2020) 187-193 193 
 

 
2020 – European Journal of Chemistry – CC BY NC – DOI: 10.5155/eurjchem.11.3.187-193.1976 

 
However, three ligands (1, 4, and 13) have higher binding 

score, which ranges from -24.8616 to -24.0026 kcal/mol, ligand 
1 formed two π-cation interaction with ArgA37 and LysA128, 
and two metal complexations with Mg ion with ThrA21 and 
ThrA42. Ligand 4 formed three interactions, a π-cation 
interaction with ArgA37 and two metal complexations with Mg 
ion with ThrA21 and ThrA42. Ligand 13 formed two π-cation 
interactions with ArgA37 and LysA128 (Figure 2 and 3). 
 
4. Conclusion 
 

In this work, a QSAR study was performed based on 
theoretical molecular descriptors, the built model serves as a 
guide for providing the structural requirements affecting the 
anticancer activity against pancreatic cancer cell line MIA PaCa-
2, through the identification of the most relevant selected 
molecular descriptors in the models, comprehensive 
assessment (internal and external validation) indicate that the 
built QSAR model was robust and satisfactory, and that the 
selected descriptors could account for the structural features 
responsible for anticancer drugs activity of the compounds. The 
QSAR model developed and molecular docking in this study can 
provide a useful tool to predict the activity of new compounds 
and also to design new compounds with high activity. 
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