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were	 conducted	 for	 different	 stoichiometric	 concentrations	 of	
the	 dicarboxylate	 ligand.	 The	 obtained	 least	 square	 rate	
constant	kobs,	 at	different	experimental	conditions	are	 listed	 in	
Table	1.	

Garrick	[10]	found	that	the	rate	of	aquation	of	chloropenta	
amminecobalt(III)	 ion	 was	 slightly	 increased	 by	 chloride,	
nitrate,	 chlorate,	 formate	 and	 acetate	 anions	 while	 sulphate	
cause	 marked	 acceleration.	 Garrick	 expressed	 his	 results	 in	
terms	of,	Equation	2.	
	
݇௦ ൌ 	݇ଵ  ݇ଶܥ			 	 	 	 	 (2)	
	
where,	kobs	is	the	observed	pseudo‐unimolecular	rate	constant,	
k1	its	value	in	the	absence	of	L,	k2	is	the	catalytic	coefficient	and	
CL	 is	 the	 stiochiometric	 concentration	 of	 the	 univalent	 ligand.	
Jones,	 Harris	 and	 Wallace	 [11]	 on	 testing	 the	 last	 equation	
found	that	the	plots	of	kobs	against	CL	of	univalent	ligands	were	
linear	 and	 extrapolated	 to	 a	 common	 k1	 at	 CL	 =	 0	 while	 for	
divalent	ligands	the	plots	are	nonlinear.		

In	the	present	investigation,	it	is	now	necessary	to	examine	
the	 possible	 empirical	 correlations	 in	 the	 succinate	 ion	
solutions	containing	different	concentrations	of	ethylene	glycol	
(up	 to	 50%)	 where	 the	 added	 ethylene	 glycol	 lowered	 the	
dielectric	 constant	 which	 assist	 the	 ion‐association	 process.	
The	 stoichiometric	 concentration	 of	 the	 succinate	 ion	 can	 be	
expressed	by	 the	 stoichiometric	 cabroxylic	 acid	 concentration	
(m1).	Firstly	most	plots	of	kobs	versus	m1	for	different	succinate	
ion	 at	 different	 solvent	 compositions	 gave	 nonlinear	 plots	
radiating	 from	 k1	 (rate	 constant	 in	 absence	 of	 succinate	 ion).	
This	 nonlinear	 correlation	 is	 agreed	 with	 the	 work	 of	 Jones,	
Harris	 and	Wallace	 [11]	 for	 divalent	 ion‐pairing	 ligands	 (like	
dicarboxylates).	 These	 plots	 are	 refined	 by	 using	 the	 free	
succinate	 ion	 concentration	 [L]	 instead	 of	 m1which	 is	
reprehensive	in	Figure	1.	

	

 
	
Figure	 1.	 	 Variation	 of	 kobs	 versus	 [L]	 for	 succinate	 ion	 at	 45	 °C	 for	 50%	
solvent	composition.	

	
Different	 attempts	were	 tested	 and	 one	 of	 them	was	 only	

valid	 in	 which	 the	 plots	 of	 1/(kobs–k1)	 versus	 1/[L]	 (L	 is	 L2‐)	
give	a	straight	line	with	a	positive	slope	and	positive	intercept,	
as	 shown	 in	 Figure	 2.	 This	 linearity	 leads	 to	 the	 following	
empirical	correlation	(Equation	3).	
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where	 a	 and	 b	 are	 empirical	 constants	 and	 their	 values	 for	
different	 cases	 are	 listed	 in	 Table	 2.	 Equation	 3	 can	 take	
another	form,	Equation	4.	
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Figure	2. Plot	of	1	/	(kobs – k1)	versus	[L]	for	succinate	ion	at	45	oC	for	50%	
solvent	composition.	
	

Data	 in	 Table	 2,	 shows	 that	 values	 of	 the	 empirical	
constants	 a	 and	 b	 depend	 on	 the	 solvent	 composition	 which	
arises	 from	 the	 solute‐solvent	 and	 the	 solvent‐solvent	
interactions.	

In	presence	of	succinte	ions,	an	ion‐pair	 is	formed	and	the	
aquation	reaction	can	be	represented	as:	
	

CpX2+ + H2O [CpXH2O]2+
k1

																(5)	
	

			(6)	
	
where,	ܮܺܥ	 is	 the	 ion‐pair	 concentration,	 	is	ାଶܺܥ the	 free	
complex	ion	concentration	and	kobs	is	related	to	kip	according	to	
Wyatt	and	Davies	treatment	[12].	

The	 principle	 of	 calculations	 of	 ion‐pair	 rate	 constant	 kip,	
were	 discussed	 before	 [2].	 K1,	 K2	 and	 KD	 values	 taken	 from	
references	 [13,14].The	 calculation	 of	 the	 free	 ion‐pairing	
succinate	 concentration	 [L]	 is	 based	 on	 the	 following	 set	 of	
equations,	 and	 Table	 3	 collects	 the	 average	 kip	 values	 at	
different	conditions.	
	
CpXL		CpX2+	+	L2‐	KD	 	 	 	 (7)	
	
NaL‐		Na+	+	L2‐	KNaL‐	 	 	 	 (8)	
	
H2L		HL‐	+	H+	K1	 	 	 	 	 (9)	
	
HL‐		L2‐	+	H+	K2					 	 	 	 	 (10)	
	
KD	=	[CpX2+][L2‐]	f22/	[CpXL]					 	 	 (11)	
	
K1	=	[H+][HL‐]	f12	/	[H2L]			 	 	 	 (12)	
	
K2	=	[H+][L2‐]	f2/	[HL‐]				 	 	 	 (13)	
	
KNaL‐‐	=	[Na+][L2‐]	f2/	[NaL‐]				 	 	 	 (14)	
	
where	f1	and	f2	are	the	activity	coefficients	of	the	univalent	and	
divalent	 ions	 respectively.	 Their	 values	 were	 obtained	 from	
Debye‐Huckel	equation	in	the	form	log	f	=	‐A	(I½/1+I.3I½)‐0.3I		
where	I	is	the	ionic	strength,	
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Table	1.	Values	of	rate	constant	kobs,	for	the	aquation	of	[Co(NH3)5	Br]2+	in	succinate	media	at	different	composition		of	ethylene	glycol.	

%	
35	oC	 45	oC	 55	oC	 65	oC	

103	[L]		 kobs*	x107	 103	[L]		 kobs	*	x107 103	[L]	 kobs	*	x107 103	[L]	 kobs	*	x107

0	

5.39	 236.5	 5.26	 679.8 4.78 2463.9 5.28	 9113.7
8.09	 245.8	 8.19	 774.1 7.31 2489.2 7.97	 7081.7
10.84	 250.0	 10.72	 784.4 9.73 2527.9 10.76	 9063.9
13.57	 255.0	 13.48	 806.6 12.20 2698.4 13.47	 11845.8
16.20	 257.3	 16.14	 848.4 14.64 2629.8 16.11	 11602.4
18.81	 263.1	 18.66	 885.1 17.09 2925.4 18.76	 12195.5

10	

5.34	 246.2	 5.33	 702.7 5.26 2329.2 5.31	 10713.5
8.10	 259.4	 8.07	 762.8 8.02 2567.6 8.056	 10293.1
10.79	 268.1	 10.77	 733.8 10.76 2647.4 10.83	 9583.9
13.53	 275.5	 13.46	 813.3 13.48 2656.7 13.56	 11534.6
16.21	 280.8	 16.06	 793.5 16.07 2728.6 16.17	 11327.6
18.77	 285.1	 18.77	 839.9 18.66 2816.0 18.95	 11412.2

20	

5.34	 178.0	 5.19	 475.0 5.25 2551.2 5.23	 8267.4
8.13	 173.5	 8.05	 500.7 8.05 2909.7 8.00	 10725.0
10.91	 190.0	 10.83	 526.8 10.80 2848.7 10.79	 9498.6
13.65	 194.5	 13.48	 577.1 13.50 2581.6 13.51	 10368.4
16.27	 198.3	 16.20	 612.2 16.19 2919.6 16.22	 13870.6
18.99	 187.4	 18.81	 650.9	 18.82	 2402.3	 18.87	 11777.3	

30	

5.24	 180.4	 5.18	 625.4 5.17 2382.0 5.16	 7660.3
8.03	 188.8	 7.94	 704.5 7.99 2566.3 7.96	 8782.6
10.84	 193.8	 10.76	 688.8 10.79 2681.2 10.76	 8420.1
13.58	 196.8	 13.56	 742.6 13.55 2780.0 13.52	 9623.7
16.34	 202.1	 16.31	 731.8 16.27 2682.8 16.28	 9874.5
18.98	 203.3	 18.85	 762.6	 19.02	 2792.1	 19.02	 9299.4	

40	

5.17	 186.7	 5.27	 612.5 5.09 2188.7 5.04	 8008.4
7.99	 220.0	 8.05	 622.6 7.90 2426.3 7.78	 9165.7
10.81	 196.1	 10.84	 667.8 10.72 2407.6 10.65	 9698.0
13.62	 199.8	 13.67	 696.7 13.36 2382.2 13.43	 7498.0
16.34	 215.0	 16.39	 720.4	 16.13	 2351.3	 16.17	 10538.5	
19.07	 204.6	 19.08	 698.2	 18.91	 2468.0	 18.98	 8680.1	

50	

5.14	 211.0	 5.15	 544.3 4.94 2095.3 5.00	 6831.5
7.97	 539.6	 7.90	 602.5 7.74 1651.3 7.79	 7963.1
10.80	 692.8	 10.81	 650.5 10.67 2416.9 10.71	 7810.8
13.65	 285.0	 13.63	 661.1 13.38 2464.0 13.44	 7600.1
16.39	 438.0	 16.43	 654.2	 16.24	 2559.6	 16.31	 8064.5	
19.15	 356.0	 19.15	 705.7	 18.97	 2661.8	 19.09	 8476.9	

	
Table	2.	Values	of	(a,	b	and	a/b)	(a	=	Intercept,	b	=	Slope)	of	equation	1	for	succinate	ion	at	different	composition	of	ethylene	glycol.	

W/W,	%a	 
Succinate	ion	

a	 b a/b	
0	 ‐8.7453	 0.7465	 ‐11.715	
10	 23.1520	 0.1045	 221.550	
20	 8.7441	 0.6695 13.061	
30	 19.8020	 0.0699 283.290	
40	 21.8470	 0.0661 330.514	
50	 19.6120	 0.0999 196.316	
a	w/w,	%	of	ethan‐1,2	diol.	
	
Table	3.	Average	values	of	ion‐pair	rate	constant	105	kip	(s‐1)	at	different	experimental	conditions	for	succinate	ion.		

W/W,	%a		
Temp.	°C	

35	 45 55 65	
0	 3.4	 10.9	 34.8	 179.7	
10	 4.2	 12.7	 38.7	 180.9	
20	 2.6	 8.4 44.6 146.6	
30	 2.7	 11.3 39.4 131.4	
40	 2.9	 10.2 33.4 116.3	
50	 4.6	 9.3 35.3 110.3	
a	w/w,	%	of	ethan‐1,2	diol.	
	
	
I	=	0.5	([H+]	+	[HL‐]	+	4	[L2‐]	+	4	[CpX2+]	+	2m3	+	[Na+]	+	[NaL‐])		
	 	 	 	 	 	 (15)	
	
m1	=	[H2L]	+	[HL‐]	+	[L2‐]	+	[CpXL]	+	[NaL‐]		 	 (16)	
	
m3	=	[CpX2+]	+	[CpXL]			 	 	 	 (17)	
	
where	 m3	 is	 the	 stoichiometric	 concentration	 of	 the	 complex	
ion,	(m3	=	[CpX2+]	+	[CpXL]),	k1	is	the	observed	rate	constant	in	
the	absence	of	the	succinate	ion‐pairing	ligand	(X	=	Br).	

The	 principle	 of	 calculations	 performed	 by	 computer	
programs	can	be	summarized	as.	

For	the	first	cycle		
	
[H+]	=	0,	[CpXL]	=	0,	[NaL‐]	=	0	 	 	 (18)	
	

[CpX2+]	=	m3	‐	[CpXL],	[HL‐]	=	0.5	m2	[H2L]	=	0.3	m1			 (19)	
	
[L2‐]	=	m1	‐	[HL‐]	‐	[CpXL]	‐	[NaL‐]	‐	[H2L]		 	 (20)	
	
[Na+]	=	2	m2	‐	[NaL‐]	 	 	 	 (21)	
	

Then	 the	 ionic	 strength	 takes	 its	 first	 approximated	 value	
and	then	f1	and	f2	(f2	=	4	f1)	after	which	the	following	terms	take	
their	new	values	as,	
	
[H+]	=	K2	[HL‐]	/	[L2‐]	f2		 	 	 	 (22)	
	
[H2L]	=	[HL‐]	[H+]	f	21	/	K1		 	 	 	 (23)	
	
[HL‐]	=	2	m1	‐	2m2	‐	2[H2L]	‐	[H+]		 	 	 (24)	
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[L2‐]	=	m1	‐	[HL‐]	‐	[H2L]	‐[CpXL]	‐[NaL‐]		 	 (25)	
	
	
[NaL‐]	=	[Na+][	L2‐]	f2	/	K	NaL‐		 	 	 	 (26)	
	
[CpXL]	=	m3	/	[(KD	/f22	[L2‐])	+1]		 	 	 (27)	
	
[CpX2+]	=	m3	‐	[CpXL]		 	 	 	 (28)	
	
and	 then	 I,	 f1	 and	 f2	 recalculated	 again.	 These	 steps	 of	
calculations	 were	 repeated	 many	 times	 until	 the	 difference	
between	two	successive	values	of	[L]	becomes	equal	to	(or	less	
than)	10‐7.		
	
3.1.	Variation	of	activation	parameters	with	solvent	
composition	
	

The	thermodynamic	parameters	of	the	ion‐pairing	aquation	
reactions,	∆G*ip,	∆H*ip	and	∆S*ip	were	calculated	at	25	oC	using	
least	 square	 procedure	 program,	 and	 these	 values	 with	 their	
standard	deviations	 are	 given	 in	Table	4.	 ∆G*ip	 values	 show	a	
small	increase	with	increase	the	mole	fraction	of	the	co‐solvent,	
giving	a	good	indication	of	the	compensation	between	∆H*ip	and	
∆S*ip	.Variation	of	∆H*ip	and	∆S*ip	versus	the	mole	fraction	of	the	
co‐solvent	(χ2)	displayed	minimum	at	χ2	=	0.03	and	maximum	
at	χ2	=	0.07	as	shown	in	Figure	3.	These	values	are	found	to	be	
close	to	 those	obtained	of	other	cobalt	complexes	 in	 the	same	
solvent	system.	In	dilute	aqueous	solution	(χ2	<	0.1)	ethan‐1,2	
diol	 can	 exist	 as	 the	 gauche	 cyclic	 conformer	 with	 strong	
intermolecular	 hydrogen	 bonding,	 which	 enhances	 the	
hydrophobicity	of	the	co‐solvent	[15].	The	enhancement	of	the	
solvent	 structure	 and	 structure	 breaking,	 as	 reflected	 by	 the	
maxima	 and	minima	 in	 these	 plots,	 strongly	 suggest	 that	 the	
effect	 of	 structure	 perturbations	 in	 the	 bulk	 phase	 are	
effectively	transmitted	to	the	reaction	zone	through	the	solvent	
shell	of	the	reactant.	
	
Table	 4.	 Values	 of	 the	 thermodynamic	 parameters	 ܪ߂

∗ ,	 ߂ ܵ
∗ ,	 ܩ߂

∗ of	
different	solvent	compositions	at	25	oC.	
W/W,	%a		 ࡴࢤ

∗ 	(Kj/mol) ࡿࢤ
∗ 	(J/K.mol)	 ࡳࢤ

∗ (kJ/mol)
0	 110.38±9.21	 26.38±18.57	 102.51±17.73
10	 104.78±8.45	 10.03±16.21	 101.79±16.26
20	 116.38±6.55	 44.02±20.31	 103.26±12.61
30	 108.56±1.22	 20.04±3.78	 102.59±2.35	
40	 103.69±2.06	 6.40±4.22	 102.43±3.97
50	 91.35±9.31	 ‐33.22±18.87	 101.23±17.92	
a	W/W	%	of	ethan‐1,2	diol.	
	

 
	

Figure	3.	Plot	of	(∆G*ip,	∆H*ip,	∆S*ip)	versus	X2.
	
3.2.	Extrathermodynamic	analysis		
	

In	the	present	work	the	plot	of	∆H*ip	versus	∆S*ip	for	the	ion‐
pair	 aquation	 reactions	 at	 different	 compositions	 is	 linear	 as	

shown	in	Figure	4.	The	parallel	changes	in	∆H*ip	and	∆S*ip	 lead	
to	 only	 small	 changes	 in	 ∆G*ip	 and	 for	 such	 a	 closely	 related	
series,	 a	 common	 reaction	 mechanism	 is	 supported.	 The	
obtained	isokinetic	temperature	(β)	is	322.4	K.		

	

 
Figure	4.	Isokinetic	plot	of	the	aquation	of	[Co(NH3)5Br]2+	at	different	solvent	
composition.	

	
The	 genuine	 nature	 of	 the	 isokinetic	 relationship	 was	

verified	by	the	Exner	criterion	[16]	by	plotting	log	k(328	K)	versus	
log	 k(318	 K)	 .	 The	 value	 of	 β	 was	 calculated	 from	 Equation	 29,	
where	b	is	the	slope	of	Exner	plot,	and	the	ratio	T1/	T2	must	be	
smaller	than	unity.	
 

ߚ ൌ 	 భ் మ்ሺିଵሻ

 మ்ି భ்
			 	 	 	 (29)	

	
The	 calculated	 value	 of	 β	 is	 330	 K,	 which	 lie	 within	 the	

studied	temperature	range.	This	means	that	the	compensation	
effect	 must	 be	 born	 in	 mind.	 The	 true	 explanation	 of	
compensation	effect	 lie	in	terms	of	solvent‐solute	 interactions.	
Any	effect	that,	for	example,	leads	to	stronger	binding	between	
a	 solute	 molecule	 and	 the	 solvent	 molecules	 will	 lower	 the	
enthalpy;	 it	 will	 also,	 by	 restricting	 the	 freedom	 of	 vibration	
and	 of	 rotation	 of	 the	 solvent	 molecules,	 lower	 the	 entropy.	
Application	of	more	exact	theories	to	these	effects	leads	to	the	
result	 that	 they	 generally	 give	 rise	 to	 a	 fairly	 exact	
compensation	between	∆H*ip	and	T∆S*ip	and	therefore	to	a	very	
small	effect	on	∆G*ip.	

Although	the	effect	of	solvent	on	the	rate	and	the	position	
of	 chemical	 equilibrium	 has	 been	 known,	 there	 is	 still	 no	
reliable	 or	 exact	 methods	 for	 a	 quantitative	 description	 and	
prediction	 of	 such	 solvent	 effects.	 In	 the	 present	 work	 the	
correlations	 ∆G*ip‐∆Goass,	 ∆H*ip‐∆Hoass	 and	 ∆S*ip‐	 ∆Soass	 were	
found	 to	 be	 linear	 at	 different	 solvent	 compositions	 (0‐
50%w/w)	 and	 can	 be	 represented	 by	 the	 following	 Equation	
30.		
	
y	=	mx	+	c				 	 	 	 	 (30)	
	
in	 which	 y	 represents	 ∆G*ip,	 ∆H*ip	 or	 ∆S*ip	 and	 x	 represents	
∆Goass,	∆Hoass	or	∆Soass	where	 these	correlations	can	describe	a	
Linear	 Free	 Energy	 ,	 Linear	 Enthalpy,	 and	 Linear	 Entropy	
Relationships	.	The	m	and	c	values	were	found	to	be	70.44	and	
109,	 ‐1.23	 and	 116,	 ‐1.04	 and	 86.1	 for	 the	 above	 relations	
respectively.	 These	 linear	 correlations	 can	 refer	 to	 a	 common	
reaction	mechanism	existing	within	 the	studied	mixed	solvent	
compositions.	
	
3.3.	Variation	of	ion‐pair	rate	constant	with	dielectric	
constant	and	water	concentration	
	

Elsemongy	and	Amira	[17]	proposed	a	general	equation	for	
the	 variation	 of	 specific	 rate	 constant	 (k)	 with	 the	 dielectric	
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constant	(D)	for	any	reaction,	in	which	the	transition	state	may	
or	 may	 not	 be	 polarized.	 This	 equation	 was	 proved	 to	 be	
applicable	 to	 usual	 reactions,	 as	 well	 as	 those	 exhibiting	
minima	 or	 maxima	with	 solvent	 composition	 variation.	 Their	
equation	takes	the	form,	Equation	31),	
	
݈݃ 


ൌ 	 ா.

ଶ.ଷଷ	ோ ୪୭ 	ሺ
ವ
	ሻ
		 	 	 	 (31)	

	
(Log	C	=	Log	a	+	293.15	b)		 	 	 	 (32)	
	
where	A	is	the	frequency	factor,	a	and	b	are	Akerlöf`s	empirical	
constants	 [18].	The	 log	A/k	versus	Eb/log	 (C/D)	gives	 a	 good	
straight	 line	 passing	 through	 origin	 with	 a	 slope	 equal	 to	
0.0520,	which	is	in	consistent	with	the	theoretical	one	(0.0522).	
This	finding	add,	a	further	support	to	this	equation.	

Also	 log	kip	was	plotted	against	 reciprocal	of	 the	dielectric	
constant	 D	 at	 different	 temperatures,	 where	 the	 dielectric	
constant	 values	 of	 different	 compositions	 are	 obtained	 from	
Akerlöf	data	[18].	As	shown	in	Figure	5,	the	plot	was	found	to	
be	 non	 linear	 in	 accordance	 with	 the	 general	 observations	
found	 in	 the	 aquation	 of	 a	 large	 number	 of	 other	 cobalt(III)	
complexes	[19‐25]	in	water‐cosolvent	mixtures,	which	led	to	a	
conclusion,	that	the	contribution	of	the	non	electrostatic	part	of	
solvent	 effect,	 overcomes	 the	 electrostatic	 component	 part.	
Also,	 this	 parameter	 measures	 macroscopic	 properties,	 while	
specific	 solute‐solvent	 interactions	 occur	 on	 a	 microscopic	
scale	 are	 completely	 neglected.	 In	 such	 cases,	 the	 differential	
solvation	 of	 the	 initial	 and	 transition	 states	 is	 the	 controlling	
factor	for	the	changes	in	the	rate	constant	[26].	

	

 
	

Figure	5.	Variation	of	log	kip	versus	1/D	at	35	°C.
	
The	plot	 of	 the	 logarithm	of	 ion	 pair	 rate	 constant	 versus	

the	 logarithm	of	water	 concentration	at	 constant	 temperature	
and	varying	solvent	composition	is	found	to	be	nonlinear.	This	
nonlinearity	 can	 be	 attributed	 the	 complex	 structure	 of	 the	
mixed	solvent	medium.	
	
3.4.	Proposed	reaction	mechanism	
	

A	 proposed	 reaction	 mechanism	 which	 takes	 into	
considerations,	 the	 Wyatt	 and	 Davies	 treatment	 [12],	 the	
extrathermodynamic	analysis	of	 the	obtained	kinetic	data,	 the	
kinetic	solvent	effects	and	the	empirical	correlation	of	kobs	with	
the	 free	 concentration	 of	 the	 ion‐pairing	 succinate	 ligand	 is	
described	by	the	following	scheme.		
	

		 	 (33)	

   (34)	
	

	 		 (35)	
	
	ଷାܥ and	 	ାܮܥ are	 five	 coordinate	 intermediates	 (kinetic	
solvent	effect)	

   (36)	
	

  (37)	
	
where	 ݇௦	.݉ଷ	 ൌ ݇ସ	ሾܥଷା	ሿ 		݇ହ	ሾܮܥାሿ	(Watt	 and	 Davies	
treatment)	and	
	
	݉ଷ	 ൌ 	 ൧	ଷାܥൣ 		 				ା൧ܮܥൣ 	 	 	 (38)	
		
i.e.	݇௦	.݉ଷ	 ൌ ݇ସሺ݉ଷ െ ሾܮܥା	ሿሻ 		݇ହ	ሾܮܥାሿ						 (39)	
		

Therefore	
	
	݇௦	.݉ଷ	 ൌ ݉ଷ݇ସ  ሾܮܥା	ሿ	ሺkହ െ	kସሻ			 	 (40)	
	

Applying	steady	state	treatment	on	ሾܮܥାሿ	and	[ܮܺܥሿ		
	
݇ଷሾܮܺܥሿ ൌ ݇ହ	ሾܮܥାሿ				 	 	 	 (41)	

	
݇ଵሾܺܥଶାሿሾܮଶିሿ ൌ ݇ିଵሾܮܺܥሿ  kଷሾܮܺܥሿ				 	 (42)	
	
or		
	
݇ଵሺ݉ଷ െ	[ܮܺܥ]	)	ሾܮଶିሿ ൌ ሺ	݇ିଵ  ݇ଷሻሾ	ሾܮܺܥሿ			 	 (43)	
	
i.e.	݇ଵ݉ଷ	ሾܮଶିሿ ൌ ሼ݇ଵሾܮଶିሿ  ሺ݇ିଵ  ݇ଷሻሽሾܮܺܥሿ		 	 (44)	
	

Therefore,		
	

ሾܮܺܥሿ ൌ
భ	య	ሾమషሿ

ሺషభାయሻାభሾమషሿ
		 	 	 (45)	

		
From	Equations	41	and	45	

	

ሾܥሿ ൌ య
ఱ
ሼ

భయ൫మష൯

ሺషభାయሻାభሾ	మష	ሿ
	ሽ		 	 	 (46)	

		 		
Substituting	in	Equation	40,	and	rearrangement		

	
Therefore,	

	

݇௦ ൌ 	
రା൜

ೖభ	ೖర
ሺೖషభశೖయሻ	

ା	
ೖభ	ೖయ
ೖఱ

ቀ	
ೖఱ	షೖర
ೖషభ	శೖయ

ቁൠሾమషሿ

ଵା	
ೖభ	

ሺೖషభశೖయሻ	
ሾమషሿ

			 	 (47)	

		
Equation	47	discuss	the	empirical	correlation	between	kobs	

and	[L2‐]	in	which	k1	in	Equation	4	is	replaced	by	k4	in	Equation	
47,	where	

	
ܽ
ܾൗ ൌ

	భ
షభ	ାయ

	 	and						1 ܾൗ ൌ 	 భయ
ఱ

ሼ ఱ	ିర
షభାయ

ሽ			 (48)	

	
and	 consequently	 the	 empirical	 constant	 (a)	 equal	 to		

ఱ
యሺఱିర	ሻ

.	
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4.	Conclusion

		
Our	 aim	 in	 the	 present	 investigation	 was	 to	 look	 for	

possible	 correlations	 between	 the	 thermodynamic	 properties	
of	 the	 activated	 complex	 and	 the	 corresponding	
thermodynamic	 functions	 of	 the	 ion‐pair	 formation	 reactions	
within	 the	 studied	 binary	 composition	 of	 the	mixtures	 under	
investigation.	 Further	 we	 investigated	 the	 kinetic	 solvent	
effects	 and	 the	 empirical	 correlation	 of	 kobs	 with	 the	 free	
concentration	 of	 the	 ion‐pairing	 succinate.	 Third	 the	 future	
work	 must	 extended	 to	 deal	 with	 other	 solvent	 systems	 and	
other	 types	 of	 dicarboxylate	 ion‐pairing	 ligands	 to	 the	 throw	
light	on	these	solvent‐solvent	and	solute‐solvent	interactions.	
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