European Journal of Chemistry 2015, 6(3), 279-286. doi:10.5155/eurjchem.6.3.279-286.1255

The investigation of the photophysical properties of α-chlorocurcumin and α-methylcurcumin


Bahjat Ali Saeed (1,*)

(1) Department of Chemistry, College of Education, University of Basrah, Basrah‐16001, Iraq
(*) Corresponding Author

Received: 12 Feb 2015, Accepted: 04 Apr 2015, Published: 30 Sep 2015

Abstract


The electronic properties of α-chlorocurcumin and α-methylcurcumin was theoretically investigated at the B3LYP/6-311++G(d,p) level of theory. The thermodynamics quantities were estimated by calculating the frequencies of the molecules. Three main isomers were predicted after full geometry optimization of various suggested isomers within the tautomeric mixture of each molecule; the cis-enol, trans-enol and the trans-diketo isomers. Their stability was in the sequence: cis-enol > trans-diketo > trans-enol. The stabilization energy for the cis-enol with respect to trans-diketo and trans-enol in chlorocurcumin is 8.44 and 12.59 kcal/mol, respectively, while in methylcurcumin, it is 4.80 and 10.79 kcal/mol, respectively. The fluorescence spectra were recorded for the investigated compounds in several protic and aprotic solvent with different dielectric constants and H-bonding abilities. The emission maxima are within the range 487 to 571 nm in ethylene glycol, while they are within the range 475 to 557 nm in n-hexane. The fluorescence quantum yields of both compounds are low and lower than those of curcumin. The quantum yield of chlorocurcumin ranges from ΦFl = 0.008 in MeOH to ΦFl = 0.058 in toluene, while for methylcurcumin it ranges from ΦFl = 0.007 in DMF to ΦFl = 0.0524 in ethylene glycol. The fluorescence of both compounds quenched by water and their fluorescence life times are estimated from the slopes of the linear curves that obtained from Stern-Volmer relationship to be 1.44 and 1.40 psec for chlorocurcumin and methylcurcumin, respectively.


Keywords


Quenching; Stokes shift; Free energy; Fluorescence; Curcuminoids; Stern-Volmer relationship

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.6.3.279-286.1255

Article Metrics


This Abstract was viewed 509 times | PDF Article downloaded 224 times

References

[1]. Liu, K.; Guo, T. L.; Lee, H. G.; Chojnacki, J.; Lee, H. G.; Wang, X.; Siedlak, S. I.; Rao, W.; Zhu, X.; Zhang, Sh. ACS Chem. Neurosci 2012, 3, 141-146.
http://dx.doi.org/10.1021/cn200122j

[2]. Chen, Z. G.; Zhu, L.; Chen, J. H.; Guo, Z. M. Spectrochim. Acta A 2009, 72, 518-522.
http://dx.doi.org/10.1016/j.saa.2008.10.034

[3]. Esatbeyouglu, T.; Huebbe, P.; Emst, I. M. A.; Chin, D.; Wanger, A. E.; Rimbach, G. Angew. Chem. Int. Ed. 2012, 51, 5308-5332.
http://dx.doi.org/10.1002/anie.201107724

[4]. Dahl, T. A.; McGowan, W. M.; Shand, M. A.; Srinivasan, V. S. Arch. Microbiol. 1989, 151, 183-185.
http://dx.doi.org/10.1007/BF00414437

[5]. Haukvik, T.; Bruzell, E.; Kristensen, S.; Tonnesen, H. H. Pharmazie 2010, 65, 600-606.

[6]. Haukvik, T.; Bruzell, E.; Kristensen, S.; Tonnesen, H. H. Pharmazie 2011, 66, 69-74.

[7]. Dahl, T. A.; Bilski, P.; Reszka, K. J.; Chignell, C. F. Photochem. Photobiol. 1994, 59, 290-294.
http://dx.doi.org/10.1111/j.1751-1097.1994.tb05036.x

[8]. Hegge, A. B.; Nielsen, T. T.; Larsen, K. L.; Bruzell, E.; Tonnesen, H. H. Photochem. Photobiol. 2012, 101, 1524-1537.

[9]. Gilli, G.; Bertolasi, V. In: Rappoport, Z. (Ed.) The chemistry of enols. Wiley, New York, 1990.

[10]. Patra, D.; Malaeb, N. N. Luminescence 2012, 27, 11-15.
http://dx.doi.org/10.1002/bio.1313

[11]. Tonnesen, H. H.; Vries, H.; Karlsen, J.; Vanhenegouwen, J. B. J. Pharm. Sci. 1987, 76, 371-373.
http://dx.doi.org/10.1002/jps.2600760506

[12]. Gorman, A. A.; Hamblett, I.; Srinivasan, V. S.; Wood, P. D. Photochem. Photobiol. 1994, 59, 389-398.
http://dx.doi.org/10.1111/j.1751-1097.1994.tb05053.x

[13]. Chan, W. H.; Wu, H. J. J. Cell. Biochem. 2004, 92, 200-212.
http://dx.doi.org/10.1002/jcb.20059

[14]. Koon, H.; Leung, A. W. N.; Yue, K. K. M.; Mak, N. K. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 205-216.
http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i1-2.120

[15]. Park, K.; Lee, J. H. Oncol. Rep. 2007, 17, 537-540.

[16]. Lao, C. D.; Demierre, M. F.; Sondok, V. K. Exp. Rev. Anticancer Ther. 2006, 6, 1559-1568.
http://dx.doi.org/10.1586/14737140.6.11.1559

[17]. Odot, J.; Albert, P.; Carlier, A.; Tarpin, M.; Devy, J.; Madoulet, C. Int. J. Cancer 2004, 111, 381-387.
http://dx.doi.org/10.1002/ijc.20160

[18]. Siwak, D. R.; Shishodia, S.; Aggarwal, B. B.; Kurzrock, R. Cancer 2005, 104, 879-890.
http://dx.doi.org/10.1002/cncr.21216

[19]. Khopde, S. M.; Priyadarsini, K. I.; Palit, D. K.; Mukherjee, T. Photochem. Photobiol. 2000, 72, 625-631.
http://dx.doi.org/10.1562/0031-8655(2000)072<0625:EOSOTE>2.0.CO;2

[20]. Chignell, C. F.; Bilskj, P.; Reszka, K. J.; Motten, A. G.; Sik, R. H.; Dahl, T. A. Photochem. Photobiol. 1994, 59, 295-302.
http://dx.doi.org/10.1111/j.1751-1097.1994.tb05037.x

[21]. Iwunze, M. O. Monats. Chem. 2004, 135, 231-240.
http://dx.doi.org/10.1007/s00706-003-0112-3

[22]. Nardo, L.; Paderno, R.; Andreoni, A.; Masson, M.; Haukvik, T.; Tonnesen, H. H. Spectroscopy 2008, 22, 187-198.
http://dx.doi.org/10.1155/2008/928407

[23]. Kee, T. W.; Adhikary, P.; Carlson, P. J.; Mukherjee, P.; Petrich, J. W. Aust. J. Chem. 2011, 64, 23-30.
http://dx.doi.org/10.1071/CH10417

[24]. Khodpe, S. M.; Priyadarsini, K. I.; Venkatesan, P.; Rao, M. N. A. Biophys. Chem. 1999, 80, 85-91.
http://dx.doi.org/10.1016/S0301-4622(99)00070-8

[25]. Priyadarsini, K. I. Free Radic. Biol. Med. 1997, 23, 838-845.
http://dx.doi.org/10.1016/S0891-5849(97)00026-9

[26]. Patra, D.; Malaeb, N. N. Luminescence 2012, 27, 11-15.
http://dx.doi.org/10.1002/bio.1313

[27]. Khumsupan, P.; Ramires, R.; Khumsupan, D.; Narayanaswami, V. Biochim. Biophys. Acta 2011, 1808, 352-359.

[28]. Priyadarsini, K. I. J. Photochem. Photobiol. C: Photochem. Rev. 2009, 10, 81-95.
http://dx.doi.org/10.1016/j.jphotochemrev.2009.05.001

[29]. Sahu, A.; Kasoju, N.; Bora, U. Biomicromolecules 2008, 9, 2905-2912.
http://dx.doi.org/10.1021/bm800683f

[30]. Wang, F.; Yang, J.; Wu, X.; Wang, F.; Liu, Sh. Anal. Bioanal. Chem. 2006, 385, 139-145.
http://dx.doi.org/10.1007/s00216-006-0372-y

[31]. Baglole, K. N.; Boland, P. G.; Wagner, B. D. J. Photochem. Photobiol. A: Chem. 2005, 173, 230-237.
http://dx.doi.org/10.1016/j.jphotochem.2005.04.002

[32]. Rankin, M. A.; Wagner, B. D. Supramol. Chem. 2004, 16, 513-519.
http://dx.doi.org/10.1080/10610270412331283583

[33]. Xu, G.; Wa, D.; Wang, J.; Jiang, B.; Wang, M.; Xue, X.; Zhou, S.; Wu, B.; Jiang, M. Dyes Pigm. 2014, 101, 312-317.
http://dx.doi.org/10.1016/j.dyepig.2013.09.034

[34]. Seltzer, M. D.; Fallis, S.; Hollins, R. A; Prokopuk, N.; Bui, R. N. J. Flouresc. 2005, 15, 597-603.
http://dx.doi.org/10.1007/s10895-005-2832-8

[35]. Nardo, L.; Andreoni, A.; Bondani, M.; Masson, M.; Tonnesen, H. H. J. Photochem. Photobiol. B: Biology 2009, 97, 77-88.
http://dx.doi.org/10.1016/j.jphotobiol.2009.08.004

[36]. Caselli, M.; Ferrari, E.; Imbriano, C.; Pignedoli, F. J. Photochem. Photobiol. A: Chem. 2010, 210, 115-124.
http://dx.doi.org/10.1016/j.jphotochem.2010.01.008

[37]. Nardo, L.; Andreoni, A.; Masson, M.; Haukvik, T.; Tonnesen, H. H. J. Fluoresc. 2011, 21, 627-635.
http://dx.doi.org/10.1007/s10895-010-0750-x

[38]. Nardo, L.; Andreoni, A.; Bodani, M.; Masson, M.; Haukvik, T.; Tonnesen, H. H. J. Fluoresc. 2012, 22, 597-608.
http://dx.doi.org/10.1007/s10895-011-0995-z

[39]. Bong, P. H. Bull. Korean Chem. Soc. 2000, 2, 81-86.

[40]. Menelaou, M.; Ouharrou, F.; Rodriguez, L.; Roubeau, O.; Teat, S. J.; Aliaga-Alcalde, N. Chem. Eur. J. 2012, 18, 11545-11549.
http://dx.doi.org/10.1002/chem.201200955

[41]. Wang, F.; Huang, W.; Wang, Y. J. Luminescence 2008, 128, 110-116.
http://dx.doi.org/10.1016/j.jlumin.2007.05.012

[42]. Al-Salim, T., Ph.D. Thesis, University of Basrah, 2013.

[43]. Velapoldi, R.; Tonnesen, H. H. J. Fluoresc. 2004, 14, 465-472.
http://dx.doi.org/10.1023/B:JOFL.0000031828.96368.c1

[44]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT, 2009.

[45]. Parr, R. G.; Wang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press, New York, 1989.

[46]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
http://dx.doi.org/10.1063/1.464913

[47]. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997-1000.
http://dx.doi.org/10.1103/PhysRevLett.52.997

[48]. Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2010, 132, 114110-114116.
http://dx.doi.org/10.1063/1.3359469

[49]. Balasubramanian, K. J. Agric. Food. Chem. 2006, 54, 3512-3520.
http://dx.doi.org/10.1021/jf0603533

[50]. Shen. L.; Ji, H. F. Spectrochim. Acta A 2007, 67, 619-623.
http://dx.doi.org/10.1016/j.saa.2006.08.018

[51]. Bassetti, M.; Gerichelli, G.; Floris, B. Tetrahedron 1988, 44, 2997-3004.

[52]. Manbeck, K. A.; Boaz, N. C.; Bair, N. C., Sanders, A. M. S.; Marsh, A. L. J. Chem. Educ. 2011, 88, 1444-1445.
http://dx.doi.org/10.1021/ed1010932

[53]. Zsila, F.; Bikadi, Z.; Simony, M. Tetrahedron: Asymm. 2003, 14, 2433-2444.
http://dx.doi.org/10.1016/S0957-4166(03)00486-5

[54]. Belova, N. V.; Oberhammer, H.; Girichev, G. V.; Shylkov, A. J. Phys. Chem. A 2008, 112, 3209-3214.
http://dx.doi.org/10.1021/jp711290e

[55]. Moriya, T. Bull. Chem. Soc. Jpn. 1984, 57, 1723-1730.
http://dx.doi.org/10.1246/bcsj.57.1723


How to cite


Saeed, B. Eur. J. Chem. 2015, 6(3), 279-286. doi:10.5155/eurjchem.6.3.279-286.1255
Saeed, B. The investigation of the photophysical properties of α-chlorocurcumin and α-methylcurcumin. Eur. J. Chem. 2015, 6(3), 279-286. doi:10.5155/eurjchem.6.3.279-286.1255
Saeed, B. (2015). The investigation of the photophysical properties of α-chlorocurcumin and α-methylcurcumin. European Journal of Chemistry, 6(3), 279-286. doi:10.5155/eurjchem.6.3.279-286.1255
Saeed, Bahjat. "The investigation of the photophysical properties of α-chlorocurcumin and α-methylcurcumin." European Journal of Chemistry [Online], 6.3 (2015): 279-286. Web. 17 Nov. 2019
Saeed, Bahjat. "The investigation of the photophysical properties of α-chlorocurcumin and α-methylcurcumin" European Journal of Chemistry [Online], Volume 6 Number 3 (30 September 2015)

DOI Link: https://doi.org/10.5155/eurjchem.6.3.279-286.1255

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.