European Journal of Chemistry 2016, 7(1), 121-127. doi:10.5155/eurjchem.7.1.121-127.1361

One-pot method of synthesis and supercritical carbon dioxide drying of PVdF-HFP composite membranes


Agnieszka Martyla (1,*) , Robert Przekop (2) , Monika Osinska-Broniarz (3) , Mariusz Walkowiak (4) , Maciej Kopczyk (5)

(1) Institute of Non-Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, 12 Forteczna St., 61-362, Poznan, Poland
(2) Center of Advanced Technologies Adam Mickiewicz University, 89c Umultowska St., 61-614 Poznan, Poland
(3) Institute of Non-Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, 12 Forteczna St., 61-362, Poznan, Poland
(4) Institute of Non-Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, 12 Forteczna St., 61-362, Poznan, Poland
(5) Institute of Non-Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, 12 Forteczna St., 61-362, Poznan, Poland
(*) Corresponding Author

Received: 10 Nov 2015, Accepted: 19 Dec 2015, Published: 31 Mar 2016

Abstract


This paper describes one-pot method of the synthesis and properties of composite polymer gel electrolytes based on poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP). As the precursor of the inorganic filler tetraethyl orthosilicate (TEOS) and titanium tetra-n-butoxide (Ti(OC4H9)4) were used. The drying of membranes with fillers was carried out with supercritical CO2. The membranes and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells.


Keywords


Li-ion battery; Inorganic fillers; Synthesis design; Sol-gel processes; Supercritical CO2 drying; Composite gel electrolytes

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.7.1.121-127.1361

Get Citation | Scilit | GrowKudos | ResearchGate | Publons | Microsoft Academic

WorldCat | Dimensions | SemanticScholar | PlumX Metrics | Kopernio | Zotero | Mendeley

Article Metrics


This Abstract was viewed 456 times | PDF Article downloaded 120 times


References

[1]. Armand, M.; Tarascon, J. M. Nature 2008, 451, 652-657.
http://dx.doi.org/10.1038/451652a

[2]. Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928-935.
http://dx.doi.org/10.1126/science.1212741

[3]. Park, O. K.; Cho, Y.; Lee, S.; Yoo, H. C.; Song, H. K.; Cho, J. Energy Env. Sci. 2011, 4, 1621-1633.
http://dx.doi.org/10.1039/c0ee00559b

[4]. Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2009, 194(2), 601-609.
http://dx.doi.org/10.1016/j.jpowsour.2009.06.089

[5]. DuPasquier, A.; Warren, P. C.; Culver, D.; Gozdz, A. S.; Amatucci, G. G.; Tarascon, J. M. Solid State Ionics 2011, 135, 249-257.
http://dx.doi.org/10.1016/S0167-2738(00)00371-4

[6]. Fergus, J. W. J. Power Sources 2010, 195(15), 4554-4569.
http://dx.doi.org/10.1016/j.jpowsour.2010.01.076

[7]. Bonne, M.; Pronier, S.; Can, F.; Courtois, X.; Valange, S.; Tatibouet, J. M.; Royer, S.; Marecot, P.; Duprez, D. Solid State Sci. 2010, 12(6), 1002-1012.
http://dx.doi.org/10.1016/j.solidstatesciences.2009.10.009

[8]. Cao, J.; Wang, L.; Shang, Y.; Fang, M.; Deng, L.; Gao, J.; Li, J.; Chen, H.; He, X. Electrochim. Acta 2013, 111, 674-679.
http://dx.doi.org/10.1016/j.electacta.2013.08.048

[9]. Kurc, B. Electrochim. Acta 2014, 125, 415-420.
http://dx.doi.org/10.1016/j.electacta.2014.01.117

[10]. Murthy, S. N. The Rigaku Journal 2004, 21, 15-24.

[11]. Sakka, S. Handbook of sol-gel science and technology processing characterization and applications. Kozuka S. Kluwer Academic Publishers, 2005.

[12]. Martyla, A.; Olejnik, B.; Kirszensztejn, P.; Przekop, R. Int. J. Hydrogen Energ. 2011, 36, 8358-8364.
http://dx.doi.org/10.1016/j.ijhydene.2011.04.091

[13]. Kirszensztejn, P.; Kawałko, A.; Tolinska, A.; Przekop, R. J. Porous Mater. 2011, 18, 241-249.
http://dx.doi.org/10.1007/s10934-010-9376-2

[14]. Tomer, V.; Manias, E.; Randall, C. A. J. Appl. Phys. 2011, 110, 044107.
http://dx.doi.org/10.1063/1.3609082

[15]. Thanganathan, U.; Nogami, M. RSC Advances 2012, 2, 9596-9605.
http://dx.doi.org/10.1039/c2ra21520a

[16]. Stephan, A. M.; Nahm, K. S.; Kumar, T. P.; Kulandainathan, M. A.; Ravi, G.; Wilson, J. J. Power Sources 2005, 159 (2), 1316-1321.
http://dx.doi.org/10.1016/j.jpowsour.2005.11.055

[17]. Wieczorek, W.; Steven, J. R.; Florjanczyk, Z. Solid State Ionics 1996, 85, 67-72.
http://dx.doi.org/10.1016/0167-2738(96)00042-2

[18]. Ulaganathan, M.; Nithya, R.; Rajendran, S.; Raghu, S. Solid State Ionics 2012, 218, 7-12.
http://dx.doi.org/10.1016/j.ssi.2012.04.029

[19]. Ataollahi, N.; Ahmad, A.; Hamzah, H.; Rahman, M. Y. A.; Mohamed, N. S. J. Electro. Sci. 2012, 7, 6693-6703.

[20]. Balachandran, K.; Venckatesh, R.; Sivaraj, R. Int. J. Eng. Sci. Tech. 2010, 2(8), 3695-3700.

[21]. Saikia, D.; Chen-Yang, Y. W.; Chen, Y. T.; Li, Y. K; Lin, S. I. Desalination 2008, 234, 24-32.
http://dx.doi.org/10.1016/j.desal.2007.09.066

[22]. Zhang, H. Z.; Banfield, J. F. J. Mater. Res. 2000, 15, 437-448.
http://dx.doi.org/10.1557/JMR.2000.0067

[23]. Li, Y.; Sun, X.; Li, H.; Wang, S.; Wei, Y. Powder Tech. 2009, 194, 149-152.
http://dx.doi.org/10.1016/j.powtec.2009.03.041

[24]. Osinska, M.; Zalewska, A.; Jesionowski, T.; Walkowiak, M. J. Membrane Sci. 2009, 326, 582-588.
http://dx.doi.org/10.1016/j.memsci.2008.10.036

[25]. Walkowiak, M.; Osinska, M.; Jesionowski, T.; Siwinska-Stefanska, K. Cent. Eur. J. Chem. 2010, 8(6), 1311-1317.

[26]. Miao, R.; Liu, B.; Zhu, Z.; Liu, Y.; Li, J.; Wang, X.; Li, Q. J. Power Sources 2008, 84(2), 420-426.
http://dx.doi.org/10.1016/j.jpowsour.2008.03.045

[27]. Caillon-Caravanier, M.; Claude-Montigny, B.; Lemordant, D.; Bosser, G. J. Power Sources 2002, 107, 125-132.
http://dx.doi.org/10.1016/S0378-7753(01)01008-4

[28]. Wu, C. G.; Lu, M. I.; Tsai, C. C.; Chuang, H. J. J. Power Sources 2006, 159(1), 295-300.
http://dx.doi.org/10.1016/j.jpowsour.2006.04.108

[29]. Jeon, J. D.; Kim, M. J.; Chung, J. W.; Kwak, S. I. NSTI Nanotech 2005, ISBN 0-9767985-1-4, 2005, 2.

[30]. Li, G.; Li, Z.; Zhang, P.; Zhang, H.; Wu, Y. Pure Appl. Chem. 2008, 80, 2553-2563.


How to cite


Martyla, A.; Przekop, R.; Osinska-Broniarz, M.; Walkowiak, M.; Kopczyk, M. Eur. J. Chem. 2016, 7(1), 121-127. doi:10.5155/eurjchem.7.1.121-127.1361
Martyla, A.; Przekop, R.; Osinska-Broniarz, M.; Walkowiak, M.; Kopczyk, M. One-pot method of synthesis and supercritical carbon dioxide drying of PVdF-HFP composite membranes. Eur. J. Chem. 2016, 7(1), 121-127. doi:10.5155/eurjchem.7.1.121-127.1361
Martyla, A., Przekop, R., Osinska-Broniarz, M., Walkowiak, M., & Kopczyk, M. (2016). One-pot method of synthesis and supercritical carbon dioxide drying of PVdF-HFP composite membranes. European Journal of Chemistry, 7(1), 121-127. doi:10.5155/eurjchem.7.1.121-127.1361
Martyla, Agnieszka, Robert Przekop, Monika Osinska-Broniarz, Mariusz Walkowiak, & Maciej Kopczyk. "One-pot method of synthesis and supercritical carbon dioxide drying of PVdF-HFP composite membranes." European Journal of Chemistry [Online], 7.1 (2016): 121-127. Web. 6 Dec. 2019
Martyla, Agnieszka, Przekop, Robert, Osinska-Broniarz, Monika, Walkowiak, Mariusz, AND Kopczyk, Maciej. "One-pot method of synthesis and supercritical carbon dioxide drying of PVdF-HFP composite membranes" European Journal of Chemistry [Online], Volume 7 Number 1 (31 March 2016)

DOI Link: https://doi.org/10.5155/eurjchem.7.1.121-127.1361

| | | | |

| | | | | |

.

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.