European Journal of Chemistry

Comparison of the observed size-dependent melting point of CdSe nanocrystals to theoretical predictions

Crossmark


Main Article Content

Albert Demaine Dukes III
Christopher Dylan Pitts
Anyway Brenda Kapingidza
David Eric Gardner
Ralph Charles Layland

Abstract

Cadmium selenide nanocrystals were observed to have a size-dependent melting point which was depressed relative to the bulk melting temperature. The observed size-dependent melting point ranged from 500-1478 K, while a model based on the surface area to volume ratio predicted that is should range between 774-1250 K. The nanocrystals were heated in situ in the electron microscope, and the melting point was almost immediately followed by the vaporization of the CdSe nanocrystals, allowing for straightforward determination of the melting temperature. The differences between the observed melting point of CdSe nanocrystals and the values predicted by the surface area to volume ratio model indicates that additional factors are involved in the melting point depression of nanocrystals.


icon graph This Abstract was viewed 1546 times | icon graph Article PDF downloaded 630 times

How to Cite
(1)
Dukes III, A. D.; Pitts, C. D.; Kapingidza, A. B.; Gardner, D. E.; Layland, R. C. Comparison of the Observed Size-Dependent Melting Point of CdSe Nanocrystals to Theoretical Predictions. Eur. J. Chem. 2018, 9, 39-43.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Brus, L. E. J. Chem. Phys. 1984, 80, 4403-4408.
https://doi.org/10.1063/1.447218

[2]. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706-8715.
https://doi.org/10.1021/ja00072a025

[3]. Landes, C.; Burda, C. Braun, M. J. Phys. Chem. B 2001, 105, 2981-2986.
https://doi.org/10.1021/jp0041050

[4]. Swafford, L. A.; Weigand, L. A.; Bowers, M. J.; McBride, J. R.; Rapaport, J. L.; Watt, T. L.; Dixit, S. K.; Feldman, L. C.; Rosenthal, S. J. J. Am. Chem. Soc. 2006, 128, 12299-12306.
https://doi.org/10.1021/ja063939e

[5]. Rosenthal, S. J.; McBride, J.; Pennycook, S.; Feldman, L. C. Surf. Sci. Rep. 2007, 62, 111-157.
https://doi.org/10.1016/j.surfrep.2007.02.001

[6]. Antoniammal, P.; Arivuoli, D. J. J. Nanomater. 2012, 2012, 415797.

[7]. Magomedov, M. N. Tech. Phys. 2016, 61, 730-733.
https://doi.org/10.1134/S1063784216050157

[8]. Pan, L. S.; Lee, H. P.; Lu, C. Eur. Phys. J. D 2008, 50, 27-33.
https://doi.org/10.1140/epjd/e2008-00183-2

[9]. Delogu, F. J. Mater. Sci. 2008, 43, 2611-2617.
https://doi.org/10.1007/s10853-008-2470-z

[10]. Pawlow, P. Zeitschrift für Phys. Chemie 1909, 65, 1-35.
https://doi.org/10.1515/zpch-1909-6502

[11]. Holloman, J. H.; Turnbull, D. Prog. Met. Phys. 1953, 4, 333-388.
https://doi.org/10.1016/0502-8205(53)90020-3

[12]. Qi, W. H. Physica B 2005, 368, 46-50.
https://doi.org/10.1016/j.physb.2005.06.035

[13]. Gupta, S. K.; Talati, M.; Jha, P. K. Mater. Sci. Forum 2008, 570, 132-137.
https://doi.org/10.4028/www.scientific.net/MSF.570.132

[14]. Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science, 1992, 256, 1425-1427.
https://doi.org/10.1126/science.256.5062.1425

[15]. Jiang, H.; Moon, K. S.; Dong, H.; Hua, F.; Wong, C. P. Chem. Phys. Lett. 2006, 429, 492-496.
https://doi.org/10.1016/j.cplett.2006.08.027

[16]. Cameron, M. T.; Rogerson, J. A.; Blom, D. A.; Dukes III, A. D. Front. Mater. Sci. 2016, 10, 8-14.
https://doi.org/10.1007/s11706-016-0319-y

[17]. Yu, W. W.; Peng, X. Angew. Chemie Int. Ed. 2002, 114, 2368-2371.
https://doi.org/10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G

[18]. Harrell, S. M; McBride, J. R.; Rosenthal, S. J. Chem. Mater. 2013, 25, 1199-1210.
https://doi.org/10.1021/cm303318f

[19]. Shen, Y.; Gee, M. Y.; Tan, R.; Pellechia, P. J.; Greytak, A. B. Chem. Mater. 2013, 25, 2838-2848.
https://doi.org/10.1021/cm4012734

[20]. Somorjai, G. A. J. Phys. Chem. 1961, 65, 1059-1061.
https://doi.org/10.1021/j100824a511

[21]. Lide, D. R. CRC Handbook of Chemistry and Physics, 83rd edition, CRC Press, 2002.

[22]. Liu, L.; Zhuang, Z.; Xie, T.; Wang, Y. G.; Li, J.; Peng, Q.; Li, Y. J. Am. Chem. Soc. 2009, 131, 16423-16429.
https://doi.org/10.1021/ja903633d

[23]. Taylor, J.; Kippeny, T.; Rosenthal, S. J. J. Clust. Sci. 2001, 12, 571-582.
https://doi.org/10.1023/A:1014246315331

[24]. Pennycook, T. J.; McBride, J. R.; Rosenthal, S. J.; Pennycook, S. J.; Pantelides, S. T. Nano Lett. 2012, 12, 3038-3042.
https://doi.org/10.1021/nl3008727

[25]. Puzder, A. Williamson, A. J.; Zaitseva, N.; Galli, G.; Manna, L.; Alivisatos, A. P. Nano Lett. 2004, 4, 2361-2365.
https://doi.org/10.1021/nl0485861

[26]. Li. Z.; Peng, X. J. Am. Chem. Soc. 2011, 133, 6578-6586.
https://doi.org/10.1021/ja108145c

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).