European Journal of Chemistry

Benzoin condensation of aromatic aldehydes catalyzed by N-heterocyclic carbenes under mild conditions

Crossmark


Main Article Content

Isabel Monreal-Leyva
Breanna Rose Attema
Nuri Bae
Haishi Cao
Hector Palencia

Abstract

The benzoin condensation was used to evaluate the catalytic activity of different N-heterocyclic carbenes as a function of their structure and N-substituents. There is a correlation between the length of an N-alkyl substituent and its performance as an organocatalyst. Heteroaromatic aldehydes were found to be the most reactive, among the screened substrates, finishing the reaction in 30 minutes, with almost quantitative yields. On the other hand, p-nitrobenzaldehyde, a strongly electrophilic aldehyde, was the least reactive. Electronic effects have little influence on the reaction yield but steric effects can dramatically reduce it. The preformed organocatalyst reacts faster than the generated in situ, with minimum solvent.


icon graph This Abstract was viewed 6251 times | icon graph Article PDF downloaded 1491 times

How to Cite
(1)
Monreal-Leyva, I.; Attema, B. R.; Bae, N.; Cao, H.; Palencia, H. Benzoin Condensation of Aromatic Aldehydes Catalyzed by N-Heterocyclic Carbenes under Mild Conditions. Eur. J. Chem. 2019, 10, 1-6.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307-9387.
https://doi.org/10.1021/acs.chemrev.5b00060

[2]. Feroci, M.; Chiarotto, I.; Orsini, M.; Pelagalli, R.; Inesi, A. Chem. Commun. 2012, 48, 5361-5363.
https://doi.org/10.1039/c2cc30371j

[3]. Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511-3522.
https://doi.org/10.1039/c2cs15333e

[4]. Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988-3000.
https://doi.org/10.1002/anie.200603380

[5]. Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835-839.
https://doi.org/10.1038/nchem.1710

[6]. Biju, A. T.; Kuhl, N.; Glorius, F. Accounts Chem. Res. 2011, 44, 1182-1195.
https://doi.org/10.1021/ar2000716

[7]. Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606-5655.
https://doi.org/10.1021/cr068372z

[8]. Yetra, S. R.; Bhunia, A.; Patra, A.; Mane, M. V.; Vanka, K.; Biju, A. T. Adv. Synth. Catal. 2013, 355, 1089-1097.
https://doi.org/10.1002/adsc.201300219

[9]. Chauhan, P.; Enders, D. Angew. Chem. Int. Ed. 2014, 53, 1485-1487.
https://doi.org/10.1002/anie.201309952

[10]. Dell'Amico, L.; Rassu, G.; Zambrano, V.; Sartori, A.; Curti, C.; Battistini, L.; Pelosi, G.; Casiraghi, G.; Zanardi, F. J. Am. Chem. Soc. 2014, 136, 11107-11114.
https://doi.org/10.1021/ja5054576

[11]. Zhu, T.; Mou, C.; Li, B.; Smetankova, M.; Song, B. -A.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 5658-5661.
https://doi.org/10.1021/jacs.5b02219

[12]. Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F. R.; Frey, H. Chem. Rev. 2016, 116, 2170-2243.
https://doi.org/10.1021/acs.chemrev.5b00441

[13]. Coulembier, O.; Degee, P.; Hedrick, J. L.; Dubois, P. Prog. Polym. Sci. 2006, 31, 723-747.
https://doi.org/10.1016/j.progpolymsci.2006.08.004

[14]. Nyce, G. W.; Glauser, T.; Connor, E. F.; Moeck, A.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2003, 125, 3046-3056.
https://doi.org/10.1021/ja021084+

[15]. Connor, E. F.; Nyce, G. W.; Myers, M.; Moeck, A.; Hedrick, J. L. J. Am. Chem. Soc. 2002, 124, 914-915.
https://doi.org/10.1021/ja0173324

[16]. He, M.; Struble Justin, R.; Bode Jeffrey, W. J. Am. Chem. Soc. 2006, 128, 8418-8420.
https://doi.org/10.1021/ja062707c

[17]. Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem. Int. Ed. 2013, 52, 8592-8596.
https://doi.org/10.1002/anie.201303247

[18]. Lee, A.; Younai, A.; Price, C. K.; Izquierdo, J.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 10589-10592.
https://doi.org/10.1021/ja505880r

[19]. Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906-4917.
https://doi.org/10.1039/c3cs35522e

[20]. Ugai, T.; Tanaka, S.; Dokawa, S. Yakugaku Zasshi 1943, 64, 296-300.

[21]. Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719-3726.
https://doi.org/10.1021/ja01547a064

[22]. Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988-3000.
https://doi.org/10.1002/anie.200603380

[23]. Johnson, J. S. Angew. Chem., Int. Ed. 2004, 43, 1326-1328.
https://doi.org/10.1002/anie.200301702

[24]. Hayat, F.; Kang, L.; Lee, C. Y.; Shin, D. Tetrahedron 2015, 71, 2945-2950.
https://doi.org/10.1016/j.tet.2015.03.023

[25]. Malik, N.; Zhang, Z.; Erhardt, P. J. Nat. Prod. 2015, 78, 2940-2947.
https://doi.org/10.1021/acs.jnatprod.5b00607

[26]. Siddiqui, S. A.; Narkhede, U. C.; Palimkar, S. S.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron 2005, 61, 3539-3546.
https://doi.org/10.1016/j.tet.2005.01.116

[27]. Shimakawa, Y.; Morikawa, T.; Sakaguchi, S. Tetrahedron Lett. 2010, 51, 1786-1789.
https://doi.org/10.1016/j.tetlet.2010.01.103

[28]. Joo, C.; Kang, S.; Kim, S. M.; Han, H.; Yang, J. W. Tetrahedron Lett. 2010, 51, 6006-6007.
https://doi.org/10.1016/j.tetlet.2010.09.028

[29]. Mirjalili, B. B. F.; Bamoniri, A.; Akbari, A. Chem. Heterocycl. Comp. 2011, 47, 487-491.
https://doi.org/10.1007/s10593-011-0785-1

[30]. Kadam, H. K.; Khan, S.; Kunkalkar, R. A.; Tilve, S. G. Tetrahedron Lett. 2013, 54, 1003-1007.
https://doi.org/10.1016/j.tetlet.2012.12.041

[31]. Li, J. J.; Norton, M. B.; Reinhard, E. J.; Anderson, G. D.; Gregory, S. A.; Isakson, P. C.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Seibert, K.; Zhang, Y.; Zweifel, B. S.; Reitz, D. B. J. Med. Chem. 1996, 39, 1846-1856.
https://doi.org/10.1021/jm950878e

[32]. Singh, D. P.; Kumar, R.; Singh, J. Eur. J. Med. Chem. 2009, 44, 1731-1736.
https://doi.org/10.1016/j.ejmech.2008.03.007

[33]. Muccioli, G. G.; Martin, D.; Scriba, G. K. E.; Poppitz, W.; Poupaert, J. H.; Wouters, J.; Lambert, D. M. J. Med. Chem. 2005, 48, 2509-2517.
https://doi.org/10.1021/jm049263k

[34]. Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534-541.
https://doi.org/10.1021/ar030050j

[35]. Fevre, M.; Pinaud, J.; Gnanou, Y.; Vignolle, J.; Taton, D. Chem. Soc. Rev. 2013, 42, 2142-2172.
https://doi.org/10.1039/c2cs35383k

[36]. Iwamoto, K. -I.; Hamaya, M.; Hashimoto, N.; Kimura, H.; Suzuki, Y.; Sato, M. Tetrahedron Lett. 2006, 47, 7175-7177.
https://doi.org/10.1016/j.tetlet.2006.07.153

[37]. Hervert, B.; McCarthy, P. D.; Palencia, H. Tetrahedron Lett. 2014, 55, 133-136.
https://doi.org/10.1016/j.tetlet.2013.10.135

[38]. Broekemier, N. W.; Broekemier, N. C.; Short, R. T.; Palencia, H. Eur. J. Chem. 2014, 5(1), 162-166.
https://doi.org/10.5155/eurjchem.5.1.162-166.940

[39]. Liu, J.; Chen, J.; Zhao, J.; Zhao, Y.; Li, L.; Zhang, H. Synthesis-Stuttgart 2003, 2661-2666.

[40]. Delaude, L.; Szypa, M.; Demonceau, A.; Noels, A. F. Adv. Synth. Catal. 2002, 344 (6-7), 749-756.
https://doi.org/10.1002/1615-4169(200208)344:6/7<749::AID-ADSC749>3.0.CO;2-T

[41]. Amyes, T. L.; Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K., J. Am. Chem. Soc. 2004, 126 (13), 4366-4374.
https://doi.org/10.1021/ja039890j

[42]. Cai, G.; Feng, J.; Zhu, J.; Wilkie, C. A. Polym. Degrad. Stabil. 2014, 99, 204-210.
https://doi.org/10.1016/j.polymdegradstab.2013.11.004

[43]. Vora, H. U.; Lathrop, S. P.; Reynolds, N. T.; Kerr, M. S.; Read de Alaniz, J.; Rovis, T.; Chennamadhavuni, S.; Davies, H. M. L. Org. Synth. 2010, 87, 350-361.
https://doi.org/10.15227/orgsyn.087.0350

[44]. Rehbein, J.; Ruser, S. M.; Phan, J. Chem. Sci. 2015, 6(10), 6013-6018.
https://doi.org/10.1039/C5SC02186C

[45]. De Luca, L.; Mezzetti, A. Angew. Chem. Int. Ed. 2017, 56 (39), 11949-11953.
https://doi.org/10.1002/anie.201706261

[46]. Arifin, K.; Minggu, L. J.; Daud, W. R. W.; Yamin, B. M.; Daik, R.; Kassim, M. B. Spectrochim. Acta A 2014, 120, 208-215.
https://doi.org/10.1016/j.saa.2013.09.069

[47]. Myles, L.; Gathergood, N.; Connon, S. J. Chem. Commun. 2013, 49 (46), 5316-5318.
https://doi.org/10.1039/c3cc41588k

[48]. Iwamoto, K. -i.; Kimura, H.; Oike, M.; Sato, M. Org. Biomol. Chem. 2008, 6 (5), 912-915.
https://doi.org/10.1039/b719430g

[49]. Plummer, C. W.; Finke, P. E.; Mills, S. G.; Wang, J.; Tong, X.; Doss, G. A.; Fong, T. M.; Lao, J. Z.; Schaeffer, M. -T.; Chen, J.; Shen, C. P.; Stribling, D. S.; Shearman, L. P.; Strack, A. M.; Van der Ploeg, L. H. T. Bioorg. Med. Chem. Lett. 2005, 15(5), 1441-1446.
https://doi.org/10.1016/j.bmcl.2004.12.078

[50]. Procuranti, B.; Connon, S. J. Chem. Commun. 2007, 14, 1421-1423.
https://doi.org/10.1039/b618792g

[51]. Collett, C. J.; Massey, R. S.; Maguire, O. R.; Batsanov, A. S.; O'Donoghue, A. C.; Smith, A. D. Chem. Sci. 2013, 4, 1514-1522.
https://doi.org/10.1039/c2sc22137c

[52]. Haghshenas, P.; Gravel, M. Org. Lett. 2016, 18, 4518-4521.
https://doi.org/10.1021/acs.orglett.6b02123

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).