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2.	Experimental	
	
2.1.	Reagents	
	

Sodium	 bentonite	 was	 prepared	 from	 the	 product	
delivered	 by	 Sigma‐Aldrich,	 by	 equilibration	 of	 5	 g	 bentonite	
with	100	cm3	of	NaCl	(Sigma‐Aldrich,	99.99%	purity)	solution	
(1	 mol/L)	 through	 24	 h.	 The	 sodium	 form	 of	 bentonite	 was	
washed	several	 times	by	water	 to	 remove	 the	 rest	of	 sodium	
chloride.	 The	 presence	 of	 chlorides	 in	 washing	 solution	 was	
checked	 argentometrically.	 After	 filtration	 the	 solid	 residue	
was	dried	in	air.	
	
2.2.	Equilibrium	sorption	data	
	

The	 sorption	 isotherms	 of	 U(VI)	 were	 determined	 by	
contacting	 a	 0.1	 g	 sample	 of	 Na‐clay	 with	 100	 cm3	 of	 a	
UO2(CH3COO)2	⋅2H2O	+	Na2HPO4⋅7H2O	solution	(Lachema,	n.p.,	
Brno,	p.a.,	 Sigma‐Aldrich)	 at	 concentrations	 of	0.0001‐0.0010	
mol/L	 for	U(VI)	 and	P(V),	 respectively.	 The	 sum	of	U(V)	 and	
P(V)	 concentrations	was	 always	 0.001	mol/L.	 The	 pH	 of	 the	
mixture	was	controlled	by	0.1	mol/L	acetate	buffer	(CH3COOH	
+	 CH3COONa).	 The	 following	 parameters	were	maintained:	 a	
mechanical	shaker	WU‐4,	shaking	speed	170	oscillations/min,	
shaking	 time	 6	 h,	 and	 temperature	 22	 °C.	 After	 shaking,	 the	
samples	 were	 left	 to	 stand	 for	 12	 h	 and	 were	 then	 passed	
through	 filter	 paper	 (Filtrak	 390,	 Polish	 Chemical	 Reagents)	
and	centrifuged	at	10,000	rpm	for	15	min	(Med.	Instruments).	
The	 initial	and	the	equilibrium	concentrations	of	U(VI)	 in	 the	
aqueous	phase	were	determined	by	the	Arsenazo(III)	method	
[15],	 whereas	 the	 equilibrium	 concentrations	 of	 phosphate	
ions	 P(V)	 in	 the	 aqueous	 phase	 were	 measured	
spectrophotometrically	by	the	phosphomolybdic	method	[15].	

The	concentrations	of	U(VI)	and	P(V)	ions	in	the	bentonite	
phase	(cs)	in	mol/g	were	calculated	from	the	relationship:	
	
cs	=	(c0−ceq)V/m	 	 	 	 	 (1)	
	
where	 cs,	 c0,	 and	 ceq	 denote	 the	 concentrations	 of	 U(VI)	 and	
P(V)	 ions	 in	 the	 sorbent	 phase,	 the	 initial	 solution,	 and	 the	
equilibrium	 solution,	 respectively.	 The	 symbols	 V	 and	 m	
designate	 the	 volume	 of	 solution	 in	 dm3	 and	 mass	 in	 g,	
respectively.	
	
2.3.	X‐ray	diffraction	data	
	

The	 samples	 for	 X‐ray	 powder	 diffraction	 analysis	 were	
obtained	 by	 shaking	 0.1	 g	 Na‐bentonite	 with	 100	 cm3	 of	 a	
mixture	 of	 UO2(CH3COO)2⋅2H2O	 and	 Na2HPO4⋅7H2O	 at	 their	
constant	 sum	 concentration	 of	 0.002	 mol/L	 and	 a	 variable	
[U(VI)]/[P(V)]	molar	ratio	of	0.4‐18.	After	6	h,	the	mixture	was	
centrifuged,	and	the	solid	residue	was	dried	in	the	air.	

The	 XRD	 spectra	 were	 registered	 using	 the	 Empyrean	
apparatus	 (Panalytical	Co.)	with	CuKα	radiation	(λ	=	1.54178	
Å)	 obtained	 using	 a	 focusing	 mirror	 and	 generated	 by	 a	 Cu	
anode	 device	 operating	 at	 40	 kV	 and	 40	 mA	 in	 conjunction	
with	 a	 one‐dimensional	 line	 positional	 detector.	 The	 ICDD	
diffraction	database	was	used	for	the	identification	of	peaks	in	
the	spectrum.	
	
2.4.	X‐ray	photoelectron	spectroscopy	data	
	

The	 samples	 for	 the	 analysis	 of	 X‐ray	 photoelectron	
spectroscopy	 spectra	were	 prepared	 by	 shaking	 1.5	 g	 of	 Na‐
bentonite	with	100	cm3	of	a	0.002	mol/L	UO2(CH3COO)2⋅2H2O	
solution	 or	 with	 a	 mixture	 of	 0.002	mol/L	 of	 UO2(CH3COO)2	
and	Na2HPO4⋅7H2O	 (0.002	mol/L)	at	pH	=	4	or	7	 (symbols	of	
samples:	 U4,	 UP4,	 U7,	 UP7).	 After	 6	 h,	 the	 mixtures	 were	
centrifuged,	 and	 the	 solid	 residue	 was	 dried	 in	 the	 air.	 The	
same	 procedure	 was	 applied	 for	 the	 samples	 with	 different	
proportions	 of	 U(VI)	 and	 P(V)	 in	 the	 initial	 solution.	 The	

concentration	 of	 U(VI)	 was	 0.002	 mol/L,	 whereas	 the	
concentration	of	P(V)	changed	according	to	the	series	0.0002,	
0.001,	 0.002,	 0.005	 mol/L.	 The	 symbols	 of	 the	 respective	
samples	were:	UP0.0002,	UP0.001,	UP0.002,	and	UP0.005.	

The	U4f	XPS	spectra	were	recorded	on	an	ESCA	apparatus	
with	 a	 multidetection	 electron	 analyzer	 Scienta	 R4000	
(produced	 by	 VG	 Scienta)	 in	 the	 fixed	 analyzer	 transmission	
mode.	An	unmonochromatized	AlK	source	(1253.6	eV)	with	a	
voltage	 of	 12	 kV	 and	 an	 emission	 current	 of	 30	 mA	 was	
employed.	Powdered	samples	were	placed	on	a	molybdenium	
sample	 holder	 and	 submitted	 to	 a	 vacuum	of	 5	 ×	 10−9	mbar.	
The	U4f	spectra	were	fitted,	using	CASA	XPS	software,	with	a	
Gaussian‐Lorentzian	 peak	 shape	 after	 subtraction	 of	 the	
background	with	a	Shirley	baseline;	the	uranium	4f	spin‐orbit	
coupling	was	maintained	at	10.8	eV,	and	the	component	ratio	
(U4f5/2)/(U4f7/2)	was	constrained	to	0.75.	The	typical	error	
associated	with	binding	energies	was	+/−	0.3	eV.	
	
3.	Results	and	discussion	
	
3.1.	Sorption	isotherms	
	

Sorption	isotherms	of	U(VI)	and	P(V)	ions	on	bentonite	in	
the	presence	 of	 phosphate	 are	 given	 in	 Figure	 1.	There	 is	 an	
evident	 improvement	 in	 U(VI)	 and	 P(V)	 sorption	 in	 the	 bi‐
component	 system	 compared	 with	 the	 mono‐component	
systems.	It	seems,	however,	that	P(V)	peaks	refer	to	the	similar	
complexes	independent	of	the	pH.	Their	position	is	 located	at	
initial	solution	c0	=	0.0005	mol/L.	The	U(VI)	peak	has	changed	
its	 position	 from	 c0	 =	 0.0006	 to	 0.0008	mol/L.	 The	 enhance‐
ment	 of	 the	 U(VI)	 peak	 (when	 the	 bi‐component	 system	 is	
compared	 with	 the	 mono‐component	 ones)	 is	 easily	 recog‐
nizable	for	pH	=	4.7	and	is	significantly	weakened	for	pH	=	6.6.	

The	positions	of	the	maxima	of	U(VI)	and	P(V)	sorption	are	
shown	 in	 Figure	 2.	 At	 pH	 =	 4.7,	 the	 sorption	 maximum	 for	
U(VI)	appears	at	the	molar	ratio	of	U(VI)/P(V)	=	1.4,	whereas	
for	 pH	 =	 5.4	 and	 6.6	 at	 the	 molar	 ratios	 of	 3.3	 and	 3.6,	
respectively.	 It	 is	 interesting	 that	 the	 peaks	 related	 to	 P(V)	
sorption	appear	at	U(VI)/P(V)	=	1.2,	1.2,	1.7	for	pH	=	4.7,	5.4	
and	 6.6,	 respectively	 .	 It	 is	 rather	 certain	 that	 at	 least	 two	
different	complexes	are	present	in	the	sorbent	phase,	i.e.	ones	
with	a	higher	and	ones	with	a	lower	content	of	U(VI)	ions.	

The	 formation	 of	 (UO2)3(OH)5+	 and	 (UO2)4(OH)7+	 is	 well‐
documented	 [16].	 They	 can	 locate	 on	 silanols	 Si‐OH	 or	
aluminols	 Al‐OH.	 The	 role	 of	 phosphate	 ions	 in	 the	 whole	
complexation	 scenario	 is,	 however,	 problematic.	 The	 precipi‐
tation	of	 (UO2)3(PO4)2⋅4H2O	 in	 the	bentonite	 interlayer	 space	
results	in	a	sorption	maximum	at	[U(VI)/P(V)]s	=	1.4.	

Some	kind	of	interaction	of	(UO2)3(OH)5+	and	(UO2)4(OH)7+	
cations,	present	 in	 the	equilibrium	aqueous	phase	 (Figure	3),	
with	 HPO42−	 ions	 and	 at	 the	 same	 time	 with	 silanols	 or	
aluminols	would	lead	to	the	appearance	of	surface	complexes	
with	U(VI)/P(V)s	=	3.3	and	3.6.	Phosphate	ions	probably	play	a	
bridging	 role	 between	 oligomeric	 uranyl	 hydroxy	 complexes.	
The	 whole	 complexation	 process	 is,	 however,	 more	
complicated.	 It	 is	 rather	 certain	 that	 phosphate	 ions	 sorb	 on	
the	surface	of	bentonite	via	an	exchange	reaction	[11]:	

	
HPO42−	+	Al‐OH	⇌	Al‐(HPO4)−	+	OH−			 	 (2)	
	
As	a	consequence,	uranyl	ions	would	locate	on	the	aluminum‐
phosphate	complex,	forming	Al‐(HPO4)UO2+	species	at	a	molar	
ratio	of	U(VI)/P(V)	=	1,	which	may	explain	the	position	of	the	
observed	 peaks	 of	 P(V)	 sorption	 for	 pH	 =	 4.7	 and	 5.4	 at	
[U(VI)/P(V)]s	 =	 1.2.	 An	 alternative	 complexation	 reaction	
involves	 the	 sorption	 of	 uranyl	 ions	 on	 aluminols	 with	
subsequent	coordination	of	phosphate	ions:	
	
UO22+	+	Al‐OH	⇌	Al‐O(UO2)+	+	H+		 		 	 (3)	
	
Al‐O(UO2)+	+	HPO42−	⇌	Al‐O(UO2)	HPO4−	 	 (4)	
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eV	 observed	 by	 Drot	 et	 al.	 for	 U(VI)	 sorbed	 on	 thorium	
diphosphate/phosphate	[19].	

The	 peaks	 referring	 to	 binding	 energies	 higher	 than	 384	
eV	have	not	been	recognized.	We	can	only	presume	that	they	
relate	 to	 U‐O	 bonds	 in	 triuranium	 heptaoxide	 U3O7	 [20].	 In	
turn,	 the	 peak	 380.5	 eV	 in	 the	 sample	 with	 an	 excess	 of	
phosphates,	 referring	 to	 pH	 =	 7.81,	 can	 be	 identified	 as	 an	
uranyl	polyhydroxo	complex	(UO2)x(OH)y2x−y	sorbed	on	surface	
aluminols	[21].	
	
4.	Conclusions	
	

The	experimental	results	obtained	in	this	study	lead	to	the	
following	conclusions:	

1. The	 continuous	 variation	 method	 can	 serve	 as	 a	
preliminary	test	for	the	evaluation	of	the	stoichiometry	
of	 U(VI)‐P(V)	 surface	 complexes.	 The	 approximate	
character	of	the	method	is	evident	for	pH	=	6.6,	when	
the	free	U(VI)	hydroxy	complexes	are	anchored	on	the	
sorbent	 surface	 parallel	 to	 the	 uranyl	 phosphate	
complexes.	 This	 difficulty	 can	 be	 eliminated	 by	
analyzing	 the	 intensification	 I	 of	U(VI)	 sorption	when	
the	 system	 with	 phosphates	 is	 compared	 with	 that	
without	 phosphates.	 The	 interaction	 of	 (UO2)3(OH)5+	
and	(UO2)4(OH)7+	species	with	HPO42‐	ions	is	evident.	

2. Phosphate	 anions	 evidently	 improve	 the	 sorption	 of	
U(VI)	 ions	 on	 bentonite	 owing	 to	 the	 formation	 of	
ternary	 complexes	 among	 aluminol	 sites,	 U(VI)	 and	
phosphate	anions	HPO42−.	This	fact	can	be	exploited	in	
the	 construction	 of	 engineering	 barriers	 used	 for	 the	
isolation	 of	 nuclear	 waste	 repository	 sites	 from	 the	
natural	 environment	 [22,23].	 The	 stoichiometries	 of	
these	complexes,	i.e.	their	U(VI)/P(V)s	molar	ratios,	are	
1.2,	 1.4;	 1.2,	 3.3;	 1.7,	 3.6	 for	 pH	 =	 4.7,	 5.4	 and	 6.6,	
respectively.	Deconvolution	of	 the	 sorptive	 spectra	 of	
U(VI)	 results	 in	 the	 presumption	 about	 the	 stepwise	
evolution	of	the	surface	complexes	formation	with	pH	,	
where	 UO2HPO4,	 (UO2)3(PO4)2⋅4H2O,	 (UO2)3(OH)5+,	
(UO2)4(OH)7+	species	 interact	with	the	surface	sites	of	
bentonite.	

3. X‐ray	 photoelectron	 spectroscopy	 allows	 one	 to	
diagnose	 the	 participation	 of	 silanol	 and	 aluminol	
groups	 in	 the	 complexation	 of	 U(VI)	 ions	 in	 the	
absence	and	presence	of	phosphates.	

4. X‐ray	 diffraction	 data	 confirm	 the	 precipitation	 of	
(UO2)3(PO4)2⋅4H2O	in	the	interlayer	space	of	bentonite.	
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