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Figure	 1.	 Synthesis	 of	 compound	 2‐[(4‐methylpiperazin‐1‐yl)(thiophen‐2‐yl)ethyl]hydrazinecarboxamide	 (L1)	 and	 2‐[piperazin‐1‐yl(thiophen‐2‐
yl)methyl]hydrazinecarboxamide	(L2).	

	
	
The	 epidermal	 development	 element	 receptor	 is	 derived	

from	three	auxiliary	spaces:	an	extracellular	ligand‐tying	area,	
a	transmembrane	area,	and	an	intracellular	space.	At	the	point	
when	an	agonist	ties	to	its	ligand	binding	site,	dimerization	of	
the	 epidermal	 growth	 factor	 receptor	 is	 activated.	 This	
actuates	 the	 inborn	 kinase	 area,	 prompting	 auto	 phosphory‐
lation	 on	 particular	 tyrosine	 deposits	 in	 the	 C‐terminal	 [13].	
Subsequently,	 signal	 transduction	 falls	 are	 started,	 which	
advance	 DNA	 union	 and	 cell	 expansion.	 Thus,	 the	 epidermal	
growth	 factor	 receptor	 is	 a	 factor	 responsible	 for	 cell	
relocation,	 bond,	 multiplication	 and	 resistant	 reactions	 in	 a	
few	cell	phenotypes	in	the	human	skin	[14].	

Mostly,	 the	 chemotherapeutic	 agents	 are	 administrated	
intravenously	to	deliver	 the	drugs	to	the	target	organ	selecti‐
vely.	Serum	albumins	are	the	significant	local	bearer	found	in	
the	blood	and	are	included	in	the	basic	carrying	of	exogenous	
and	 endogenous	 materials	 (unsaturated	 fats,	 supplements,	
steroids,	and	an	assortment	of	restorative	drugs).	The	active‐
tion	of	drug	mainly	depends	on	solubility,	bio‐distribution	and	
their	 interaction	 which	 is	 highly	 affected	 by	 their	 binding	
nature	and	interaction	with	protein.	For	instance,	solid	binding	
can	diminish	the	grouping	of	free	drugs	in	plasma	while	feeble	
binding	might	prompt	poor	conveyance	and	short	lifetime	[15‐
17].	This	unmistakably	demonstrates	the	binding	of	drug	with	
protein	 might	 modify	 the	 pharmacokinetics	 and	 cytotoxic	
impacts.	Consequently	the	study	of	the	interaction	of	drug	with	
protein	 is	 crucial	 to	 outline	 a	 new	 drug	 and	 enhance	 the	
therapeutic	efficacy.	Computational	biology	and	bioinformatics	
play	a	major	role	 in	designing	the	drug	molecules	and	also	 in	
speeding	up	the	drug	discovery	process.	Molecular	docking	of	
drug	molecule	with	 the	 receptor	 (target	 organ)	 gives	 impor‐
tant	information	about	the	drug	receptor	interactions.	

Herein,	we	aim	to	determine	the	receptor	interactions	and	
binding	orientation	of	ligand	compounds	by	molecular	docking	
with	two	proteins	EGFR	KINASE	TKIs‐L858	(PDB	ID:	2ITZ)	and	
Human	Serum	Albumin	(HSA;	PDB	ID:	4L8U).	Also,	the	human	
serum	albumin	with	newly	synthesized	novel	 ligands	binding	
kinetics	was	studied	by	fluorescence	spectroscopy	techniques.	
	
2.	Experimental	
	
2.1.	Reactants		
	

Analytical	 grade	 solvents	 and	 reactants	 were	 used.	 N‐
Methyl	 piperazine,	 piperazine	 and	 thiophene‐2‐carbox‐

aldehyde	were	 purchased	 from	Merck	 Products	 and	 used	 as	
such.	
	
2.2.	Instrumentations	
	

Elemental	 analyses	 and	 characterization	 studies	 were	
carried	 out	 at	 Sophisticated	 Analytical	 Instrument	 Facility	
(SAIF),	 Indian	 Institute	 of	 Technology,	 Madras,	 Tamil	 Nadu	
and	 India.	 Melting	 points	 of	 synthesized	 compounds	 were	
measured	by	electric	melting	point	 apparatus	SMP1.	 1H	NMR	
spectra	 of	 the	 samples	 were	 recorded	 on	 300	 MHz	 using	
DMSO‐d6	with	TMS	as	the	internal	standard.	The	homogeneity	
of	 the	 compounds	 was	 monitored	 by	 Thin	 Layer	 Chromato‐
graphy	(TLC)	Silica‐Gel	coated	on	glass	plate	and	visualized	by	
iodine	 vapor.	 The	 absorption	 in	 the	 UV‐Vis	 region	 was	
recorded	 by	 Perkin	 Elmer	 Lambda	 35	 Spectrophotometer	
using	DMF/DMSO	as	solvents.	IR	spectra	were	recorded	using	
KBr	 pellets	 with	 a	 Nicolet	 model	 Impact	 470	 FTIR	 spectro‐
photometer	 in	 the	 range	 of	 4000‐400	 cm‐1	 at	 the	 Regional	
Sophisticated	 Instrumentation	 Centre,	 Indian	 Institute	 of	
Technology,	 Madras,	 Tamil	 Nadu,	 India,	 using	 tetracyano‐
ethylene	 (TCNE)	 as	 the	 internal	 standard.	 Anti‐cancer	 and	
cytotoxic	 studies	 were	 carried	 out	 at	 Royal	 Bio	 Research	
Centre,	Velachery,	Chennai,	Tamil	Nadu	and	India.		
	
2.3.	Synthesis		
	

Thiophene‐2‐carboxaldehyde,	 N‐methylpiperazine	 and	
semicarbazide	 hydrochloride	 were	 taken	 in	 1:1:1	 mol	 ratio	
and	allowed	to	react	as	shown	in	Figure	1.	Semicarbazide	(11.2	
g,	 0.1	mol)	was	 taken	 in	 a	 round	 bottom	 flask	 and	 10	mL	 of	
water	was	added.	To	this	solution	10.0	mL	(0.1	mol)	N‐methyl	
piperazine	was	added	and	stirred	well	 for	15	min	by	keeping	
the	 reaction	 mixture	 on	 a	 magnetic	 stirrer.	 Thiophene‐2‐
carboxaldehyde	 (9.3	 mL,	 0.1	 mol)	 was	 added	 to	 the	 above	
mixture	 and	 stirring	was	 continued	under	 ice	 cold	 condition.	
The	 colorless	 solid	 formed	 was	 filtered,	 washed	 and	
recrystallized	using	ethanol.	The	same	procedure	was	followed	
for	 the	 synthesis	 of	 the	 rest	 of	 the	 compounds	 as	 shown	 in	
Figure	1	[18‐22].	

2‐((4‐Methylpiperazin‐1‐yl)(thiophen‐2‐yl)methyl)hydrazi‐	
necarboxamide	(L1):	Yield:	53%.	M.p.:	150‐152	°C.	FT‐IR	(KBr,	
ν,	 cm‐1):	 3301	 (N1H2),	 1548	 (NH,	 amide	 II	 band),	 1622	 (C=O,	
amide	I	band).	1H	NMR	(400	MHz,	CDCl3,	δ,	ppm):	7.88	(s,	2H,	
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NH2),	7.45‐7.44	(m,	3H,thiophene),	7.13	(d,	1H,	NH(C=O)),	4.15	
(s,	1H,	CH(NH)),	 3.90	 (s,	 3H,	CH3	 (piperazine)),	2.51‐2.50	 (m,	
8H,	 piperazine),	 1.92	 (s,	 1H,	 NH(CH)).	 13C	 NMR	 (100	 MHz,	
CDCl3,	δ,	ppm):	172.45,	150.02,	132.26,	130.13,	121.89,	114.97,	
56.15.	 HRMS	 (ESI,	m/z)	 calcd.	 for	 C11H19N5OS	 [M‐H]:269.13;	
Found:	269.2312.	Anal.	calcd.	for	C11H19N5OS:	C,	49.05;	H,	7.11;	
N,	26.00.	Found:	C,	49.08;	H,	7.08;	N,	26.01%.	

2‐(Piperazin‐1‐yl(thiophen‐2‐yl)methyl)	 hydrazinecarbox‐
amide	(L2):	Yield:	52%.	M.p.:	149‐153	°C.	FT‐IR	(KBr,	ν,	cm‐1):	
3245	ν(N1H2),	3153	ν(N2H),	1599	δ(N3H),	1719	(C=O).	1H	NMR	
(400	MHz,	CDCl3,	δ,	ppm):	9.95	(s,	2H,	NH2),	7.85	(s,	1H,	NH),	
7.13	 (m,	 3H,	 Thiophene),	 4.18	 (s,	 1H,	 CH),	 2.56	 (m,	 8H,	
piperazine),	 2.40	 (d,	 1H,	 NH	 (CH)),	 1.92	 (s,	 1H,	 NH	 of	
piperazine).	 13C	 NMR	 (100	 MHz,	 CDCl3,	 δ,	 ppm):	 170.26,	
150.02,	139.75,	130.18,	129.79,	121.89,	114,	99,	40.50,	40.00.	
HRMS	(ESI,	m/z)	calcd.	 for	C10H17N5OS	[M‐H]:	255.12;	Found:	
255.3000.	 Anal.	 calcd.	 for	 C10H17N5OS:	 C,	 47.04;	 H,	 6.71;	 N,	
27.43.	Found:	C,	47.08;	H,	6.08;	N,	26.22%.	
	
2.4.	Antimicrobial	studies	
	
2.4.1.	Antibacterial	activity	
	

To	 study	 the	 antibacterial	 activity	 of	 newly	 synthesized	
compounds,	 nutrient	 agar	 was	 used	 as	 a	 medium.	 The	 agar	
medium	was	prepared	by	dissolving	5	g	of	yeast	extract,	10	g	
meat	extract,	5	g	of	peptone,	5g	of	sodium	chloride	and	20	g	of	
agar	 in	100	mL	of	distilled	water	 in	 a	 clean	conical	 flask	and	
the	 pH	 was	 maintained	 at	 7.	 The	 solution	 was	 boiled	 to	
dissolve	the	medium	completely	and	sterilized	by	autoclaving	
at	7	kg	pressure	(121	°C)	for	15	minutes.	After	sterilization	20	
mL	media	was	poured	 in	 to	 the	 sterilized	petri	 plates.	 These	
petri	 plates	 were	 kept	 at	 room	 temperature	 for	 some	 time.	
After	 a	 few	 minutes,	 the	 medium	 got	 solidified	 in	 the	 plate.	
Then,	 it	was	 incubated	 for	 12	 h.	 After	 the	 incubation,	 it	was	
inoculated	with	microorganisms,	using	simile	swabs.	All	these	
manipulations	 were	 carried	 out	 with	 atmospheric	 air	 under	
aseptic	condition.	
	
2.4.2.	Antifungal	activity	
	

The	 potato	 dextrose	 agar	 (PDA)	 is	 used	 as	 a	 medium	 to	
determine	 antifungal	 activity	 of	 newly	 synthesized	 ligands.	
The	PDA	was	prepared	by	dissolving	20	g	of	potato	extract,	20	
g	of	agar	and	20	g	of	dextrose	in	one	liter	of	distilled	water	in	a	
clean	 conical	 flask.	 The	 solution	 was	 boiled	 to	 dissolve	 the	
media	 completely	 and	 sterilize	 by	 autoclaving	 with	 7	 kg	
pressure	 (121	 °C)	 for	 30	 minutes.	 After	 sterilization,	 20	 mL	
media	was	poured	into	the	sterilized	petri	plates.	These	petri	
plates	were	kept	at	 room	temperature	 for	some	time.	After	a	
few	minutes,	the	medium	gets	solidified	in	the	plate.0.5	mL	of	
DMSO	 was	 used	 as	 solvent	 and	 10μg	 of	 Amphotericin	 B	 as	
control.	In	a	typical	procedure,	a	well‐made	agar	medium	was	
inoculated	with	microorganism	and	 it	was	filled	with	50μL	of	
test	 solution	 using	 a	 micro	 pipette.	 Later,	 the	 plates	 were	
incubated	 at	 35	 °C	 for	 72	 h.	 During	 this	 period,	 the	 test	
solution	diffuses	and	affects	the	growth	of	the	inoculated.	
	
2.5.	Human	serum	albumin	(HSA)		
	

Human	 serum	 albumin	 (HSA)	 was	 purchased	 from	 Hi	
Media	laboratory	Pvt.	Limited,	Mumbai,	India	and	it	was	used	
without	any	further	purification.	Millipore	water	was	used	for	
preparing	solution	 throughout	 the	experiments.	HSA	solution	
was	 prepared	 in	 phosphate	 buffer	 solution	 of	 pH	 =	 7.4.	 HSA	
solution	 was	 kept	 in	 the	 dark	 at	 4	 °C.	 L1	 and	 L2	 are	 newly	
synthesized	 compounds,	 and	 the	 stock	 solutions	 of	 these	
derivatives	were	also	prepared	using	the	same	buffer.	
	
	
	

2.6.	Fluorescence	spectroscopy	studies	
	

The	 steady	 states	 fluorescence	 emission	 measurements	
were	 obtained	 using	 a	 commercially	 available	 spectrofluoro‐
meter	 (Fluoromax‐2,	 ISA;	 Jobin‐Yuvon‐Spex,	 Edison,	 NJ)	 and	
spectral	band	passes	were	kept	at	5	nm	in	both	excitation	and	
emission	 monochromators.	 The	 emission	 spectrum	 was	
recorded	 in	 the	 wavelength	 region	 300‐540	 nm	 at	 280	 nm	
excitation.	 Synchronous	 fluorescence	 spectra	 were	 recorded	
by	 simultaneously	 scanning	 the	 excitation	 (λex)	 and	 emission	
(λem)	monochromators	with	two	different	constant	wavelength	
intervals	 (Δλ)	 such	 as	 15	 and	 60	 nm	 between	 the	 excitation	
and	emission	monochromators.	This	was	carried	out	with	the	
help	 of	 Fluoromax‐2	 equipped	 with	 an	 excitation	 source	
(150W	ozone	free	Xenon	arc	lamp)	coupled	to	the	monochro‐
matic	 delivering	 light	 to	 the	 sample	 spot	 at	 desired	 wave‐
length.	 The	 fluorescence	 emission	 from	 the	 sample	 was	
collected	 by	 an	 emission	 monochromatic	 to	 photomultiplier	
tube	 (R928;	 Hamamatsu,	 Shizuoka‐Ken,	 Japan).	 In	 addition,	
using	 the	 absorption	 spectrum	 of	 L1	 and	 L2	 fluorescence	
spectrum	 of	 HSA	 (concentration	 ratio	 of	 drug	 and	 protein	 is	
1:1	 at	 pH	 =	 7.4),	 the	 fluorescence	 resonance	 energy	 transfer	
and	energy	transfer	efficacy	of	HSA	with	various	concentration	
of	drug	were	also	evaluated.	
	
2.7.	Molecular	docking	studies	
	

Molecular	 docking	 is	 a	 powerful	 tool	 in	 understanding	
different	protein	functions.	The	X‐ray	crystal	structures	of	the	
Protein	 EGFR	KINASE	 TKIs	 ‐	 L858	 (2ITZ)	 and	 human	 serum	
albumin	 protein	 (Monomer	 with	 585	 amino	 acids)	 (PDBID:	
4L8U)	obtained	from	protein	data	bank	database.	Energies	of	
protein	structures	were	minimized	using	protein	preparation	
wizard	panel	to	include	hydrogens	[23‐25].	The	charge	state	of	
protein	 residues	 is	 important	 for	 result	 generation	 by	 Glide.	
Optimized	 potential	 of	 liquid	 simulations	 (OPLS)	 force	 field	
was	 used	 for	 minimization	 process.	 Protein	 preparation	
facility	 consists	 of	 two	 steps,	 preparation	 and	 refinement.	
Energy	minimization	reorients	side‐chain	hydroxyl	groups	and	
alleviates	 potential	 steric	 clashes.	 These	 structures	 were	
energy	minimized	using	two	algorithms	with	steepest	descent	
and	conjugate	gradient.	Compounds	were	docked	in	two	drug	
binding	 sites	 using	 the	 induced	 fit	 docking	 (IFD)	 protocol.	
Here,	 both	 the	 ligand	 and	 protein	 are	 flexible	 to	 dock,	 and	
hence	 many	 conformations	 are	 generated	 for	 an	 individual	
ligand.	Based	on	the	docking	score,	glide	energy	and	hydrogen	
bond	 interaction,	 the	best	 conformation	 is	 sorted	and	 results	
were	analyzed.	
	
3.	Results	and	discussion	
	
3.1.	Synthesis	
	

Physicochemical	 characterization	 of	 the	 synthesized	
compounds	 were	 done	 by	 the	 analytical	 methods	 such	 as	
melting	 point,	 TLC,	 elemental	 analysis,	 and	 spectral	methods	
such	as	UV‐Visible,	IR,	1H	NMR,	13C	NMR	and	Mass,	Figure	2.	
	
3.2.	Antimicrobial	studies	
	

Agar	well	dispersion	strategy	was	applied	to	determine	the	
antibacterial	 and	 antifungal	 activities	 of	 these	 novel	
compounds.	All	 blended	mixtures	were	 screened	 for	 their	 in‐
vitro	 antifungal	 movement	 against	 Candida	 albicans,	
Penicillium	 notatum	 and	 Aspergillus	 flavus	 and	 in‐vitro	
antibacterial	 action	 against	 Gram‐negative	 Escherichia	 coli,	
Gram‐positive	 Staphylococcus	 aureus,	 Vibrio	 para	
haemolyticus,	 Bacillus	 subtilis,	 Klebsiella	 and	 Pseudomonas	
aeruginosa.	Amphotericin	(20	µg/plate)	and	streptomycin	(20	
µg/circle)	 were	 utilized	 as	 standard	 references	 for	
antibacterial	and	antifungal	activity,	respectively.		
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4.	Conclusions	
	

In	the	present	study,	the	amide	is	an	important	functional	
group	and	due	 to	 its	electron	properties,	 it	 is	able	 to	 interact	
and	bind	with	a	number	of	receptors.	Therefore,	the	reason	for	
the	 wide	 spread	 occurrence	 of	 amides	 in	 modern	 pharma‐
ceuticals	 and	 biologically	 active	 compounds	 is	 obvious.	 The	
properties	 of	 the	 amide	 moiety	 can	 be	 easily	 modified	 by	
various	 substitutions.	 Thus	 the	 presence	 of	 an	 amide‐like	
moiety	 is	 characteristic	 for	 various	 anticancer,	 antibacterial	
and	 antifungal	 agents.	 We	 have	 performed	 antimicrobial	
activity	 and	 the	 results	 showed	 very	 potent	 activity	 against	
many	 Gram	 positive	 and	 negative	 microbes	 and	 the	 binding	
interactions	 of	 ligands	 and	 amino	 acids	 receptors	 were	
experimentally	 confirmed	 with	 docking	 scores.	 Presently	 we	
have	made	an	attempt	to	determine	the	molecular	interactions	
of	 ligands	 and	 protein	 receptors	 using	 molecular	 docking	
studies	and	optical	spectroscopic	fluorescence	studies.	
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