

European Journal of Chemistry

Journal homepage: www.eurjchem.com

Proton-controlled mechanism for coupling among proton production/consumption reactions in CaCO₃-oversaturated waters or calcifying organism-inhabited seawaters

Kazuhiko Ichikawa

Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, JP-060-0810, Japan

*Corresponding author at: Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, JP-060-0810, Japan. Tel.: +81.11.761.5456; fax: +81.11.761.5456.E-mail address: ichikawa@ees.hokudai.ac.jp (K. Ichikawa).

ARTICLE INFORMATION

Received: 03 March 2010 Received in revised form: 21 July 2010 Accepted: 25 July 2010 Online: 31 December 2010

KEYWORDS

Acid attack Calcifying organism Phytosymbiont Proton mechanism CaCO₃-oversaturated water pH Seawater pH

Supplementary Materials

ABSTRACT

The CaCO₃-oversaturated weakly basic water at around pH=8 was proved by the novel simple equations (e.g. log [Ca²⁺] = -2pH -logP_{CO2} + 9.94) derived from material energetics and proton-controlled mechanism for coupling among proton/hydroxide production/consumption reactions (e.g. CaCO₃ + H⁺ \leftrightarrow HCO₃· + Ca²⁺) in equilibrium with atmospheric carbon dioxide. The cyclic/oscillating variation between pH=8.3 and 8.0 for marine calcifying organism-inhabited paleo and preindustrial seawaters was elucidated by applying the improved proton-controlled mechanism to biochemical reactions in cytoplasts or host tissues of marine calcifying phytoplanktons and phytosymbiont-bearing corals/zooplanktons. It was revealed that photosynthesis enhances biogenic calcification and vice versa, as the thicker growth of CaCO₃-made outer casings causes proton production and photosynthesis continuously needs protons to produce $CO_2(aq)$ from major HCO₃·. The correlation between calcification and photosynthesis creates a number of stationary states with respect to oscillating pH variation. Marine biogenic calcification releases no CO₂ to atmosphere and is no positive feedback to rising atmospheric P_{cO2} levels.

(a) Energetically controlled relative concentrations: stable major $HCO_{3^{-}}$ species, compared with unstable minor $CO_{2}(aq)$ and $CO_{3^{2^{-}}}$ species at physiological pH < ~8.5

Since the magnitude of $[HCO_3^-]/[CO_2(aq)]$ is controlled by material energetics, water/seawater CO_2 uptake is around one hundred times enhanced. The ratio is equal to ~40 at pH 8 for NaCl/NaNO₃-dissolved waters at I = ~0.1M [S1], and ~120 at pH 8 for seawaters at I = ~0.7M [S2, S3].

Minor CO_{3^2} is in equilibrium with major HCO_{3^-} via reversible acid-dissociation reaction, i.e. $HCO_{3^-} \leftrightarrow CO_{3^{2^-}} + H^+$ ($\Delta Go = 59.3 \text{ kJ mol}^{-1}$): $[HCO_{3^-}]/[CO_{3^2}]$ is equal to $\sim 2x10^2$ at I = $\sim 0.1M$ and pH 8 [S1]), and to ~ 10 at I = $\sim 0.7M$ at pH 8 for seawater [S2, S3].

(b) CaCO₃-oversaturated waters at pH < ~8.5

In CaCO₃-supersaturated waters at less than around pH 9 and I = \sim 0.1M at 300 K and 1 atm

 $HCO_{3^{-}} + Ca^{2+} = CaCO_3 + H^+, \quad \Delta Go = 11.7 \text{ kJmol-1} (1)$

where ΔGo stands for Gibbs free energy difference and Ka = $[H^+]/\{[HCO_3^-][Ca^{2+}]\}$.

 $CO_2 (aq) + OH^- = HCO_3^-$ 43.7 (2)

where Knucl = $[HCO_3^-]/\{[CO_2 (aq)][OH^-]\} = \{[HCO_3^-]/[CO_2 (aq)]\}\{Kneut [H^+]\}.$

 $H^+ + OH^- = H_2O,$ 79.9 (3)

where Kneut $=1/{[H^+][OH^-]}$ and

 $\label{eq:ca2+} [Ca^{2+}] = [H^+]/\{Ka[HCO_3^-]\} = \{ Ka \ Knucl/ \ Kneut \ \}^{-1} \ [H^+]^2 \ [CO_2 \ (aq)]^{-1}.$

European Journal of Chemistry ISSN 2153-2249 (Print) / ISSN 2153-2257 (Online) © 2010 EURJCHEM DOI:10.5155/eurichem.1.4.246-251.156 $CO_2 = CO_2(aq), 8.5$ (4)

where $[CO_2 (aq)] = k_H Pco_2$ owing to Henry's Law and $k_H = 3.3810^{-2} M$ atm⁻¹ at 300 K and 1 atm.

pCa = -log[Ca²⁺] = 2pH - pPCO2 - 9.94

 $[HCO_{3}^{-}] = [H^{+}]/\{ [Ca^{2+}] Ka \}$

 $pHCO_3 = -log[HCO_3] = -pKa + pH - pCa = pH + pPCO2 + 7.88$

 $pXsp = -log [HCO_{3}^{-}][Ca^{2+}] = pHCO_{3} + pCa = pH - 2.03$

 $pCO_2 = -\log [CO_2(aq)] = pPCO2 + 1.47$

Here pPCO2 = -log PCO2.

Figure S1 For the $CO_2/CO_2(aq)$ -HCO₃--CO₃²⁻-Ca²⁺-CaCO₃ system the time evolution of proton concentration was measured during the 0.05 M NaOH titration into 5 mM Ca⁺²-including 0.1M NaCl [S4]. An overbasic pH peak and CaCO₃ precipitation were appeared between pH 8 and 9.5 during the sodium hydroxide titration. After the NaOH or HNO₃ addition was stopped at the up arrows, the spontaneous recovery from basic to physiological or from acidic to physiological was observed. At a down arrow HNO₃ was quickly added to the solution until pH ~ 4.

(d) No real reactions somewhat different from material energetics-controlled proton production/consumption reactions

It has been sometimes recognized that acidification of waters/seawaters in equilibrium with atmosphere mainly originates from acid dissociation reaction of dissolved carbon dioxide molecules $CO_2(aq)$ as follows,

 $CO_2(aq) + H_2O \leftrightarrow HCO_3^- + H^+$. Ao = -36.6 kJ mol⁻¹

The forward reaction or proton formation is actually rejected from view of material energetics, e.g. negative standard affinity Ao [S5]. The chemical nucleophilic reaction of hydroxide ion to $CO_2(aq)$ is actual as mentioned in text, and the consumption of hydroxide ions causes water acidification under dissociation reaction of water molecules.

It is now recognized in the published articles [S3, S6-S8] that dissolution of oversaturated $CaCO_3$ or thinner growth of outer casings of calcifying organisms was caused by the decreased concentration of minor CO_3^{2-} via a reaction,

 $CO_2(aq) + CO_3^{2-} + H_2O \leftrightarrow 2HCO_3^{-}$. Ao = 23.0 kJ mol⁻¹

The above discussion was, however, built up from incorrect identification that production and dissolution of CaCO₃ are mainly controlled by Ca²⁺ + CO_{3²⁺} \leftrightarrow CaCO₃ at pH < \sim 8.5. The chemical nucleophilic reaction for HCO₃ production, CO₂(aq) + OH \leftrightarrow HCO₃, is

S2

major because of larger Ao = 43.6 kJ mol⁻¹, as mentioned in text. The production and dissolution of CaCO₃ are controlled by a chemical reaction, as mentioned in text. Minor CO_3^{2} is produced via reversible acid-dissociation reaction of major HCO_3^{-1} from view of material energetics at pH < ~8.5.

(e) Evaluation of RCa by using the observed weight W_{fora} of fossil planktonic foraminifera.

Under equilibrium or stationary state of surface foraminifera-inhabited seawaters $[Ca^{2+}]$ is inversely proportional to the observed weight W_{fora} of fossil planktonic foraminifera. Here RCa(model) was estimated from 11.6/W_{fora} because of the reference weight 11.6g at PCO2 ~280ppm and pH ~8.15 (see Table 1 of [S9]). The data of W_{fora} were measured from average weight of 50 foraminifera collected for identified age during the past 400kyr (private communication of Börbel Hönisch 2008).

- S1. e.g. Manahan, S.E. Environmental chemistry, Lewis Pub., Tokyo (1994).
- S2. Zeebe, R. E.; Wolf-Gladrow, D. CO₂ in Seawater: Equilibrium, Kinetics, Isotopes, *Elsevier Oceanography Series* 65, 2-53 (Elsevier 2000).
- S3. Fabry, V. J.; Seibel, B. A.; Feely, R. A.; Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes ICES J. Marine Sci. 2008, 65, 414- 432.
- S4. Ichikawa, K. Buffering Dissociation/formation reaction of biogenic calcium carbonate, Chemistry European J. 2007, 13, 10176-10181.
- S5. e.g., Prigogine, I.; Defay, R.; Everett, D. H. Chemical Thermodynamics (Longman, London, 1973).
- S6. Barker, S.; Higgins, J. A.; Elderfield, H. (2003), The future of the carbon cycle: review, calcification response, ballast and feedback on atmospheric CO₂, Phil. *Trans. R. Soc. Lond*.2003, *A 361*, 1977-1999.
- S7. Riebesell, U. Effect on CO2 enrichment on marine phytoplankton (review), J. Oceanography 2004, 60, 719-729
- S8. Orr, J. C. *et al.* Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms *Nature* 2005, 437, 681-686.
- S9. Hönisch, B.; Hemming, N. G. Surface ocean pH responses to variation in pCO₂ through two full glacial cycles, *Earth and Planetary Science Letters* 2005, *236*, 305-314.