European Journal of Chemistry Chem

Check for updates

View Journal Online View Article Online

Microwave assisted one pot conversion of aromatic aldehydes to nitriles

Yousef Mohammad Hijji 💿 *,1, Rajeesha Rajan 💿 1, Hani Darwish Tabba 💿 1, Imad Ali Abu-Yousef 🕩 ², Said Mansour 🕩 ³ and Hamdi Ben Yahia 🕩 ³

¹ Department of Chemistry and Earth Sciences, Qatar University, 2713, Doha, Qatar

yousef.hijji@qu.edu.qa (Y.M.H.), rajeesha.rajan@qu.edu.qa (R.R.), tabbah@qu.edu.qa (H.D.T.) ² Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates

iabuyousef@aus.edu (I.A.A.Y.)

³ Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, 34110 Doha, Qatar smansour@hbku.edu.qa (S.M.), hyahia@hbku.edu.qa (H.B.Y.)

ABSTRACT

* Corresponding author at: Department of Chemistry and Earth Sciences, Qatar University, 2713, Doha, Qatar. Tel: +974.44036548 Fax: +974.44034501 e-mail: yousef.hijji@qu.edu.qa (Y.M. Hijji).

RESEARCH ARTICLE

10.5155/eurjchem.9.3.269-274.1751

Received: 31 May 2018 Received in revised form: 18 July 2018 Accepted: 28 July 2018 Published online: 30 September 2018 Printed: 30 September 2018

KEYWORDS

Aldoxime Aldehyde Aryl nitrile Microwave Elimination Hydroxylamine Cite this: Eur. J. Chem. 2018, 9(3), 269-274 Journal website: www.eurjchem.com

are isolated simply by filtration or extraction.

Nitriles are versatile organic precursors in organic synthesis and have numerous applications. An efficient microwave assisted method for conversion of aromatic aldehydes to the corresponding nitriles is reported. Aldehydes are readily converted to oxime followed by acetylation and acetic acid elimination to provide nitriles in good yields within minutes. The method proved to be efficient for the synthesis of aromatic and heterocyclic nitriles. The reaction proceeds smoothly by microwave at 150 °C for 5 minutes. The obtained products

Supplementary materials

All these nitriles were synthesised using the general procedure mentioned in the paper.

Table S1. The temperature and time dependent studies of conversion of *m*-NBA to *m*-nitrobenzonitrile.

Aldehyde	Time (mins)	Temperature (°C)	Reaction condition	
m-NBA	5.0	50	*	
		100	*	
		120	*	
		150	*	
m-NBA	0.5	180	Reaction completed	
	3.0	150	*	
	5.0		*	
	10.0		Reaction completed	

* Represents the rise in temperature by 15 °C from set temperature and the reaction did not completed.

European Journal of Chemistry

ISSN 2153-2249 (Print) / ISSN 2153-2257 (Online) - Copyright © 2018 The Authors - Atlanta Publishing House LLC - Printed in the USA. This work is published and licensed by Atlanta Publishing House LLC - CC BY NC - Some Rights Reserved. http://dx.doi.org/10.5155/eurichem.9.3.269-274.1751

3-Nitrobenzonitrile (1)

2-Methoxybenzonitrile (2)

8

4-Methoxybenzonitrile (4)

2018 – European Journal of Chemistry – CC BY NC – DOI: 10.5155/eurjchem.9.3.269-274.1751

Figure S5c. ¹³C NMR for compound 5.

S6

4-Bromobenzonitrile (6)

Figure S6c. ¹H NMR for compound 6.

Figure S7a. FTIR spectrum for compound 7.

Figure S7b. ¹H NMR spectrum for compound 7.

Figure S7c. ¹³C NMR spectrum for compound 7.

2-Hydroxybenzonitrile (9)

Figure S9a. FTIR spectrum for compound 9.

Figure S9b. ¹H NMR spectrum for compound 9.

S10

4-Hydroxybenzonitrile (10)

m-Tolunitirile (11)

Figure S11c. ¹³C NMR spectrum for compound 11.

S12

1-Naphthonitrile (12)

130 125 125 Chemical Shift (spin) Figure S12c. ¹³C NMR spectrum for compound **12**.

Figure S13a. FTIR spectrum for compound 13.

Figure S13b. ¹H NMR spectrum for compound 13.

Figure S14c. ¹³C NMR spectrum for compound 14.

4-Pyridinecarbonitrile (15)

Figure S15b. ¹³C NMR spectrum for compound 15.

Indole-3-carbonitrile (16)

Figure S16a. FTIR spectrum for compound 16.

S16

Figure S16b. ¹H NMR spectrum for compound 16.

Figure S21b. ¹H NMR spectrum for compound 19.

Figure S21c. ¹³C NMR spectrum for compound 19.

Figure S22a. FTIR spectrum for compound 20a.

Figure 22b. ¹H NMR spectrum for compound 20a.

Figure S22c. ¹³C NMR spectrum for compound 20a.

Figure S23a. FTIR spectrum for compound 20b.

Figure S23b. ¹H NMR spectrum for compound 20b.

Figure S23c. ¹³C NMR spectrum for compound 20b.

<u>a</u>ïa 0.1

Figure S24c. ¹³C NMR spectrum for compound 20.

Figure S25b. ¹H NMR spectrum for compound 21.

Figure S25c. ¹³C NMR spectrum for compound 21.

Figure S1. View of the molecular structure of 2-furanaldehyde oxime benzoate showing 50% probability displacement ellipsoids

S22

EX NC Copyright © 2018 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).