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(10	%)	of	analytical	grade	 from	Merck	were	used	as	 received.	
All	 other	 reagents	 and	 solvents	 were	 of	 analytical	 grade	 and	
used	without	further	purification.	

The	 1H	 NMR	 and	 13C	 spectra	 were	 recorded	 in	 DMSO‐d6	
solvent	 on	 Jeol	 ECS‐400	 and	 300	 MHz	 spectrophotometers	
using	tetramethylsilane	as	an	internal	reference.	The	apparent	
resonance	multiplicity	 is	 described	 as	 s	 (singlet),	 br	 s	 (broad	
singlet),	 d	 (doublet),	 dd	 (doublet	 of	 doublets),	 t	 (triplet),	 q	
(quartet)	 and	 m	 (multiplet).	 Infrared	 measurements	 were	
recorded	 in	 the	 range	 400‐4000	 cm‐1	 on	 a	 Spectrum	 2000	
spectrometer	by	Perkin	Elmer.	Elemental	analysis	was	carried	
out	using	a	Perkin	Elmer	CHNS/O	2400.	Obtained	results	were	
within	0.4%	of	the	theoretical	values.	FAB	MS	were	obtained	on	
a	 Finnigan	 MAG	 90	 mass	 spectrometer	 using	 glycerol	 as	 a	
matrix.	 Thin	 layer	 chromatography	 (TLC)	 analyses	 were	
carried	out	on	5×20	cm	plates	coated	with	silica	gel	GF254	type	
60	 (25‐250	 mesh)	 using	 an	 ethyl	 acetate‐petroleum	 ether	
mixture	 (1:2)	 as	 solvent.	 The	 cross‐linking	 reaction	of	DGEBA	
with	 the	 metal	 complexes	 was	 investigated	 with	 FT‐IR	
spectrophotometer	 using	 KBr	 pellets.	 Glass	 transition	
temperatures	 of	 metal‐containing	 epoxy	 polymers	 were	
obtained	 on	 differential	 scanning	 calorimeter	 (DSC)	 and	
dynamic	mechanical	analyzer	(DMA).	The	dynamic	mechanical	
analysis	 was	 performed	 with	 a	 Diamond	 DMA	 provided	 with	
bending	 mode	 of	 deformation	 with	 a	 50	 mm	 span	 length.	
Samples	 used	 were	 in	 the	 shape	 of	 rectangular	 strips	 with	
dimensions	 of	 50×10×2	 mm.	 The	 tests	 were	 carried	 out	 at	
frequency	 of	 1	 Hz	 and	 a	 heating	 rate	 of	 2	 oC/min	 in	 a	
temperature	range	from	27	to	250	oC	under	inert	atmosphere.	
Thermal	 stability	 of	 the	 polymers	was	 determined	 using	 TGA	
by	 heating	 the	 polymer	 samples	 under	 nitrogen	 atmosphere	
and	 recording	 their	 weight	 losses.	 Moisture	 absorption	 was	
measured	 according	 to	 ASTM	 D570‐63	 standard.	 Rectangular	
shaped	 samples	 having	 dimensions	 10×10×2	mm	were	 dried	
under	 vacuum	 at	 120	 oC	 for	 24	 h	 until	 trace	water	 had	 been	
expelled,	 then	 after	 cooling	 to	 room	 temperature	 the	 samples	
were	weighed	and	placed	 in	100	 oC	boiling	water	 for	6	h	 and	
weighed	 again.	 Tensile	 testing	 was	 performed	 on	 an	 Instron	
model	4301	according	to	ASTM	D638	standard.	
	
2.2.	Synthesis	
	
2.2.1.	Synthesis	of	ligand		
	

Ethyl	 4‐[3‐(4‐nitrophenyl)thioureido)carbonyl]benzoate	
(HL)	was	prepared	as	in	our	previous	work	[16‐18].	A	solution	
of	 4‐nitrobenzoyl	 chloride	 (1.85	 g,	 0.01	 mol)	 in	 anhydrous	
acetone	 (80	 mL)	 and	 3%	 tetrabutylammonium	 bromide	
(TBAB)	in	dry	acetone	was	added	dropwise	to	a	suspension	of	
ammonium	 thiocyanate	 (0.76	 g,	 0.01	mol)	 in	 dry	 acetone	 (50	
mL)	 and	 the	 reaction	 mixture	 was	 refluxed	 for	 45	 minutes.	
After	 cooling	 to	 room	 temperature,	 a	 solution	 of	 the	
corresponding	 ethyl	 p‐aminobenzoate	 (1.65	 g,	 0.01	 mol)	 in	
anhydrous	 acetone	 (25	 mL)	 was	 added	 and	 the	 resulting	
mixture	 refluxed	 for	 1.5	h.	Hydrochloric	 acid	 (0.1	N,	400	mL)	
was	added,	and	the	solution	was	filtered.	The	solid	product	was	
washed	 with	 water	 and	 purified	 by	 recrystallization	 from	 an	
ethanol:dichloromethane	mixture	 (1:2)	 (Scheme	1).	M.p.:	179‐
180	oC.	Yield	91%.		IR	(KBr	pellet,	cm‐1):	3350	(free	NH),	3201	
(assoc.	 NH),	 1691	 (C=O),	 1735	 (C=O	 ester),	 1613	 (C=N	
stretching),	1590	(aromatic	C=C).	1H	NMR	(400	MHz,	DMSO‐d6,	
δ,	ppm):		12.56	(1H,	br	s,	NH),	11.61	(1H,	br	s,	NH),	8.23	(2H,	d,	
J=9.1	Hz),	 7.82	 (2H,	 d,	 J=8.0	Hz),	 7.66	 (2H,	 d,	 J=7.9	Hz,),	 7.62	
(2H,	d,	J=7.2	Hz),	4.32	(2H,q,	‐CH2),	1.31	(3H,	t,	‐CH3,	J=7.1	Hz).	
13C	NMR	(300	MHz,	DMSO‐d6,	δ,	ppm):	178.9	(C=S),	168.2	(C=O	
ester),	 165.0	 (C=O	 amide),	 145.8,	 130.0,	 129.2,	 126.5,	 125.3,	
124.1,	121.4,	60.7,	14.1.	Anal.	Calcd.	 for	C17H15N3O5S	(373.38):	
C,	54.68;	H,	4.05;	N,	11.25;	S,	8.59.	Found:	C,	54.67;	H,	4.06;	N,	
11.25;	S,	8.58.	
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Scheme	1	
	
	
2.2.2.	X‐ray	structure	determination	of	ethyl	4‐[3‐(4‐
nitrophenyl)	thioureido)	carbonyl]	benzoate	(HL)	
	

Crystal	 data:	 C17H15N3O5S,	 monoclinic,	 space	 group	P21/n,			
a	=	4.3449(2),	b	=	18.7349(5),	c	=	10.4511(3)	Å,		=	93.293(3)°,	
V	 =	 849.33(5)	 Å3,	T	 =	 100	K,	Z	 =	 2,	F(000)	 =	 388,	Dx	 =	 1.460				
g/cm‐1,	 	 =	 0.226	 mm–1.	 A	 yellow	 plate	 0.35×0.15×0.10	 mm3	
was	mounted	on	a	glass	 fibre	 in	 inert	oil.	Measurements	were	
performed	 on	 an	Oxford	Diffraction	 Xcalibur	 E	 diffractometer	
with	monochromated	Mo‐Kα	radiation	to	2=	30.03°.	The	data	
were	corrected	for	absorption	using	the	multi‐scan	method.	Of	
53082	 intensities,	4948	were	independent	(Rint	=	0.0348).	The	
structure	 was	 refined	 anisotropically	 using	 SHELXL‐97	 [19].	
The	 NH	 hydrogen	 was	 refined	 freely.	 The	 methyl	 group	 was	
refined	 as	 an	 idealised	 rigid	 groups	 allowed	 to	 rotate	 but	 not	
tip.	Other	hydrogen	atoms	were	included	using	a	riding	model.	
The	final	wR2	was	0.0626,	with	a	conventional	R1	of	0.0260,	for	
244	parameters;	S	=	0.98;	max.	0.238	e	Å–3.		
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2.2.3.	Preparation	of	the	copper	and	nickel	complexes	
(CuL*2	and	NiL*2)	
	
2.2.3.1.	Preparation	of	the	copper	complex	(CuL*2)	
	

The	 complexation	 of	 the	 thiourea	 derivative	 was	 carried	
out	according	to	the	reported	procedures	[20,21].	To	30	mL	of	
ethanol	 containing	 HL	 (0.01	 mol)	 was	 added	 an	 ethanol	
solution	 of	 CuCl2.2H2O	 (0.05	 mol).	 The	 reaction	 mixture	 was	
filtered	 and	 left	 to	 crystallize	 by	 slow	 evaporation	 for	 two	
weeks.	The	catalytic	reduction	of	this	complex	was	carried	out:	
CuL2	(0.01	mol),	5	mL	hydrazine	monohydrate,	70	mL	ethanol	
and	0.03	g	of	10	%	Pd‐C	were	transferred	into	a	250	mL	two‐
necked	round‐bottom	flask	and	refluxed	for	18	h.	The	reaction	
was	 monitored	 by	 thin	 layer	 chromatography	 (TLC).	 After	
completion,	the	reaction	mixture	was	allowed	to	stand	for	one	
day	 and	 then	 filtered.	 The	 solvent	 was	 removed	 by	 rotary	
evaporation	 under	 reduced	 pressure.	 The	 copper	 complex	
(CuL*2)	 was	 obtained	 as	 a	 green	 solid	 after	 two	 weeks	 by	
recrystallization	from	ethanol	(Scheme	1).	Yield:	1.50	g	(85%).	
IR	 (KBr	 pellet,	 cm‐1):	 3405,	 3325	 (NH2),	 1618	 (N‐H	 bending),	
1529	 (benzene	 ring),	 1405	 (C‐N	 stretching),	 1140	 (C=S).	 MS	
(FAB,	 m/z):	 803	 (M+).	 Anal.	 Calcd.	 for	 C34H28N6O10S2Cu	
(802.73):	C,	50.8;	H,	3.4;	N,	10.4;	S,	7.9.	Found:	C,	50.9;	H,	3.5;	N,	
10.1;	S,	7.8.	
	
2.2.3.2.	Preparation	of	the	nickel	complex	(NiL*2)	

	
To	30	mL	of	ethanol	containing	HL	(0.01	mol)	was	added	an	

ethanol	solution	of	NiCl2.6H2O	(0.05	mole),	followed	by	NaOAc	
(0.01	 mol)	 dissolved	 in	 ethanol	 was	 added,	 the	 reaction	
mixture	was	stirred	at	room	temperature	for	4	h,	and	filtered	to	
give	a	 light	yellowish	green	solid,	which	was	dried	 in	air.	The	
catalytic	reduction	of	complex	was	carried	out	as	follows.	0.01	
mol	 of	 nickel	 complex,	 5	 mL	 hydrazine	 monohydrate,	 70	 mL	
ethanol	and	0.03	g	of	10	%	Pd‐C	was	transferred	into	a	250	mL	
two‐necked	 round‐bottom	 flask	 and	 refluxed	 for	 18	 h.	 The	
reaction	was	monitored	by	TLC.	After	completion,	the	reaction	
mixture	was	allowed	to	stand	for	one	day	and	then	filtered.	The	
solvent	 was	 removed	 by	 rotary	 evaporation	 under	 reduced	
pressure.	 The	 nickel	 complex	 was	 obtained	 as	 a	 green	 solid	
after	 one	 week	 by	 recrystallization	 from	 an	 ethanol:	
dichloromethane	(1:2)	mixture	(Scheme	1).	Yield:	1.42	g	(83%).	
IR	 (KBr	 pellet,	 cm‐1):	 3405,	 3323	 (NH2),	 1619	 (N‐H	 bending),	
1528	 (benzene	 ring),	 1403	 (C‐N	 stretching),	 1142	 (C=S).	 1H	
NMR	(400	MHz,	DMSO‐d6,	δ,	ppm):	12.32	(2H,	br	s,	NH),	7.65‐
7.28	(16H,	m,	aromatic),	4.26	(4H,	m,	‐CH2),	1.27	(6H,	m,	‐CH3).	
MS	 (FAB,	 m/z):	 801	 (M+).	 Anal.	 Calcd.	 for	 C34H28N6O10S2Ni	
(800.75):	C,	51.0;	H,	3.5;	N,	10.5;	S,	8.0.	Found:	C,	51.1;	H,	3.7;	N,	
10.5;	S,	8.1.	
	
2.3.	Preparation	of	metal‐containing	epoxy	polymers	

	
A	 mixture	 of	 DGEBA	 and	 thiourea	 metal	 complex	 was	

dissolved	 in	 acetone	 at	 room	 temperature.	 Then	 the	 solvent	
was	evaporated	under	vacuum	and	 the	blends	were	placed	 in	
the	refrigerator	before	performing	the	DSC	measurement.	The	
mixture	 was	 cast	 into	 a	 metal	 or	 a	 silicone	 mould	 and	
crosslinked	in	a	heated	air	oven	(Scheme	2).	The	cured	samples	
were	 then	 cooled	 slowly	 to	 room	 temperature	 to	 prevent	
cracking.	 The	 completeness	 of	 the	 crosslinking	 reaction	 was	
confirmed	 by	 the	 disappearance	 of	 the	 characteristic	 band	 of	
the	epoxide	groups	in	DGEBA	at	912	cm−1	in	the	IR	spectrum.	
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Scheme	2	
	
The	crosslinking	temperature	range	for	CuL*2	and	NiL*2	was	

180‐210	 °C.	 When	 CuL*2	 was	 employed,	 the	 crosslinking	
temperature	was	210	°C.	The	crosslinking	time	was	2	h	at	the	
mole	 ratios	 of	 DGEBA:metal	 complex	 (100:24)	 for	 the	 copper	
complex	 and	 100:31	 for	 the	 nickel	 complex.	 A	 comparative	
polymer	was	prepared	by	crosslinking	of	DGEBA	with	DDM.	
	
3.	Results	and	discussion		
	
3.1.	Synthesis	and	characterization	of	the	ligand	and	metal	
complexes	
	

The	synthetic	pathway	for	the	target	compounds	is	outlined	
in	 Scheme	 1.	 The	 use	 of	 a	 phase	 transfer	 catalyst	 (PTC)	 as	 a	
method	of	agitating	a	heterogeneous	reaction	system	is	gaining	
recognition	[22,23].	In	search	of	improving	methods	to	prepare	
the	 target	 aroyl	 thiourea	 by	 reacting	 isothiocyanates	 with	
nucleophiles,	 we	 have	 found	 the	 use	 of	 tetrabutylammonium	
bromide	 (TBAB)	 as	 a	 PTC	 can	 afford	 aroyl	 isothiocyanates	 in	
good	 yield.	 In	 this	 communication,	 we	 have	 conducted	 our	
reaction	using	TBAB	as	a	phase	transfer	catalyst	 to	synthesize	
the	intermediate	aroylthiourea.	

The	 structure	 of	 the	 free	 ligand	 HL	 is	 shown	 in	 Figure	 1.	
There	are	 three	essentially	planar	 regions	of	 the	molecule:	 (i)	
the	ring	C11‐16	plus	C17,	C18,	O2,	O3,	N1	(mean	deviation	0.02	
Å);	(ii)	the	central	thioamide	moiety	N1,	S,	C1,	C2,	C2,	O1	(mean	
deviation	 0.04	 Å);	 (iii)	 the	 ring	 C21‐26	 plus	 N3,	 O4,	 O5,	 C2	
(mean	deviation	0.006	Å).	Interplanar	angles	are	38°	from	(i)	to	
(ii)	 and	26°	 in	 the	 opposite	 sense	 from	 (ii)	 to	 (iii).	 Consistent	
with	 this,	 the	 torsion	 angles	 along	 the	 chain	 C12‐C11‐N1‐C1‐
N2‐C2‐C21‐C26	 are	 36.5	 (about	C11‐N1),	 –173.6,	 –4.3,	 –176.5	
and	–24.7°.	There	is	an	intramolecular	hydrogen	bond	from	N1‐
H1	to	O1,	with	H…O	1.83(2)	Å	and	N‐H…O	146(2)°.	The	packing	
diagram	(Figure	2)	shows	that	the	molecules	are	connected	by	
three	hydrogen	bonds	[N2‐H02…O2	with	H…O	2.55(2)	Å,	angle	
163(1)°;	 C25‐H25…O2,	 2.48	 Å,	 133°;	 C15‐H15…O5,	 2.51	 Å,	
152°]	to	form	layers	parallel	to	(010).	Curiously,	the	classical	H	
bond	is	the	longest	of	the	three.	
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Table	1.		ΔH	and	Tg	values	for	different	epoxy/crosslinking	combinations.	
Complexes	 Ratio	epoxy	resin:	Crosslinking	

agent	
ΔH	
(J/g)

Tg	
(oC)

CuL*2																				

100:22	 522.20 140.0
100:23	 556.14							 142.0	
100:24	 565.14							 142.3	
100:25	 539.45							 141.0			
100:26	 540.36							 140.2	

NiL*2																						

100:29	 522.20 138.0
100:30	 556.14 140.0
100:31	 565.14							 141.0	
100:32	 539.45							 139.0	
100:33			 529.25	 139.0	

DDM	system	 ‐	 ‐ 122.9
	
Table	2.		Thermal	stability	of	the	cured	metal	containing	epoxy	polymers.	
Complexes	 Mole	ratio	of	curing	

agent:	DGEBA	
T10	
(oC)a	

Tmax	
(oC)b	

R500	
(%)c	

CuL*2																						

100:22	 415	 471 39.0
100:23	 412	 473 40.5
100:24	 417	 475 41.0
100:25	 414	 473 39.9
100:26	 411	 470 35.5

NiL*2																							

100:29	 410	 452 28.0
100:30	 410	 455 29.0
100:31	 415	 459 31.2
100:32	 414	 459 28.0
100:33			 414	 455 27.0

DDM	system	 ‐	 380	 410 18.0
a	Temperature	at	10%	weight	loss.		
b	Maximum	degradation	temperature	obtained	from	differential	curves.	
c	Residual	weight	at	500	oC.	
	

	
	

Figure	3.	Thermogravimetry	of	cured	polymers.
	
3.4.	Mechanical	properties	of	cured	polymers	

	
Tensile	testing	was	done	on	the	metal‐containing	polymers	

obtained	 from	 metal	 complex	 and	 DGEBA	 at	 different	 molar	
ratios	 since	 these	 polymers	 showed	 good	 thermal	 stability.	
Tensile	testing	was	carried	out	using	an	Instron	4301	universal	
testing	machine.	Three	specimens	were	cut	from	each	polymer	
sheet	for	tensile	testing.	Results	from	samples	that	failed	within	
the	 grips	 were	 excluded.	 The	 highest	 tensile	 strength	 was	
obtained	at	the	mole	ratio	of	ML*2:DGEBA	(31:100),	which	was	
comparable	to	the	epoxy‐DDM	system	(Table	3).	Increasing	the	
amount	 of	 ML*2	 in	 the	 formulation	 resulted	 in	 a	 decrease	 of	
tensile	strength,	since	the	mixture	before	curing	became	more	
viscous	 and	 therefore	 the	 polymerization	 was	 difficult	 to	
control.	

It	 was	 found	 that	 copper‐containing	 polymer	 obtained	 at	
the	mole	ratio	of	DGEBA:CuL*2	(100:24)	possessed	high	Tg,	high	
tensile	strength	and	good	thermal	stability	which	is	comparable	
to	the	DGEBA‐DDM	system.	
	
3.5.	Moisture	absorption	behaviour	

	
Moisture	absorption	will	increase	the	dielectric	constant	of	

the	 cured	 polymer	 and	 have	 a	 disadvantageous	 effect	 on	
mechanical	 properties	 [33].	 Furthermore;	 it	 will	 ionize	 the	

ionic	impurities	and	thus	corrode	the	integrated	circuits.	Thus,	
to	obtain	a	higher	performance	epoxy	polymer,	 it	 is	necessary	
to	decrease	the	moisture	absorption.	The	moisture	absorption	
was	calculated	as	percent	weight	gain:	
	
Moisture	absorption	%	=	(W/Wo‐1)	×	100%						 	 			(1)	
	
where	W	 is	 the	weight	 of	 the	 sample	 after	 dipping	 in	 100	 oC	
boiling	water	for	6	h	and	Wo	is	the	weight	of	the	sample	after	
placing	in	vacuum	oven	for	24	h.	Conventionally,	the	moisture	
absorption	increases	as	the	Tg	increases	in	the	cured	polymers	
from	 novolac	 type	 epoxy	 resin	 and	 phenol	 novolac	 [34].	
However,	 because	 of	 the	 hydrophobic	 nature	 of	 the	 thiourea	
metal	 complex,	 the	 cured	 polymer	 exhibited	 relatively	 low	
moisture	 absorption	 of	 0.851‐0.864	 %,	 compared	 to	 that	 of	
DDM‐epoxy	of	1.250	%.	

	
Table	 3.	Mechanical	 properties	 of	 epoxy	 polymers	 obtained	 from	 various	
mole	ratios	of	curing	agents	and	DGEBA.	
Complexes Mole	ratio	of	curing	agent:	

DGEBA	
Tensile	
Strength(MPa)	

CuL*2 																					

100:22	 65	
100:23 68	
100:24	 71	
100:25	 68	
100:26 66	

NiL*2 																						

100:29	 63	
100:30	 67	
100:31 69	
100:32	 68	
100:33			 68	

DDM	system	 ‐	 65	
	
3.6.	Dynamic	Mechanical	and	Thermal	Analysis	(DMTA)	

	
Dynamic	 mechanical	 observations	 were	 performed	 to	

analyze	 the	 dynamic	 elastic	 modulus	 and	 the	 occurrence	 of	
molecular	mobility	transitions	such	as	glass	transition	[35].	The	
peak	temperature	of	tan	delta	was	taken	as	the	glass	transition	
temperature.	 Dynamic	 storage	 modulus	 (E´)	 is	 the	 most	
important	 property	 to	 assess	 the	 load	 bearing	 capability	 of	 a	
polymer	and	composite	material,	which	is	close	to	the	flexural	
modulus.	 The	 ratio	 of	 the	 loss	 modulus	 (E")	 to	 the	 storage	
modulus	is	known	as	a	mechanical	loss	factor	(Tan	D),	damping	
factor,	 or	 dissipation	 factor.	 This	 quantity	 is	 the	 measure	 of	
balance	 between	 the	 elastic	 phase	 and	 the	 viscous	phase	 in	 a	
polymeric	 structure.	 Tan	 δ	 shows	 very	 accurately	 the	 phase	
transition	 temperature,	 particularly	 the	 movement	 of	 certain	
parts	of	the	polymer	molecules	when	it	is	linearly	heated.	Loss	
behaviour	 of	 the	 copper	 complex,	 nickel	 complex	 and	
DDM/epoxy	 formulation	 is	 shown	 in	 Figure	 4a.	 The	 DMTA	
measurement	 indicated	 that	 Tg	 of	 the	 cured	 polymers	 from	
copper	 and	 nickel	 metal	 complexes/epoxy	 system	 are	 142.3	
and	141	oC,	respectively,	which	are	comparatively	higher	than	
in	the	DDM/epoxy	system	(Tg	=	122.9	oC).	The	tan	delta	value	of	
the	epoxy	resin	cured	with	the	reference	curing	agent	is	higher.	
This	 shows	 that	 these	 polymeric	 materials	 cured	 with	 metal	
complex	 curing	 agents	 are	 relatively	 flexible,	 which	 is	 an	
essential	 requirement	 for	 the	 designing	 and	manufacturing	 of	
high	 pressure	 and	 high	 temperature	 sustainable	 composite	
structures.		

The	 DMTA	 curves	 of	 storage	 and	 loss	modulus	 and	 tan	 δ	
versus	 temperature	 for	 the	 cured	 polymers	 with	 copper	 and	
nickel	 complex	 curing	 agents	 are	 shown	 in	 Figure	 4a‐c.	 The	
values	of	both	the	storage	modulus	and	loss	modulus	for	cured	
polymers	 containing	 NiL*2	 and	 CuL*2	 complexes/epoxy	 resin,	
over	 the	 range	 of	 temperature	 investigated	 are	 substantially	
higher	 than	 those	 of	 the	 DDM‐epoxy	 sample.	 For	 instance,	 at	
125	 oC	 the	 storage	 modulus	 value	 for	 the	 copper	 complex‐
epoxy	 sample	 is	 6080	MPa	whereas	 its	 value	 for	 DDM‐epoxy	
sample	 is	57.39	MPa	at	 the	 same	 temperature.	 The	maximum	
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