European Journal of Chemistry

Check for updates

Chem

Vibrational spectroscopic and Hirshfeld surface analysis of *N*,*N*'-(azanediyl*bis*(2,1-phenylene))*bis*(2-chloropropanamide)

Aysegul Suzan Polat 🔟 1,*, Ilkay Gumus 🕩 2 and Hakan Arslan 🐌 1

¹Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, 33343, Turkey aysegul.polat@mersin.edu.tr (A.S.P.), hakan.arslan@mersin.edu.tr (H.A.) ²Department of Basic Sciences, Faculty of Maritime, Mersin University, Mersin, 33343, Turkey ilkay.gumus@mersin.edu.tr (I.G.)

* Corresponding author at: Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, 33343, Turkey. Tel: +90.533.5671703 Fax: +90.324.3610047 e-mail: aysegul.polat@mersin.edu.tr (A.S. Polat).

RESEARCH ARTICLE

🔤 10.5155/eurjchem.10.4.386-402.1921

Received: 02 September 2019 Received in revised form: 22 October 2019 Accepted: 26 October 2019 Published online: 31 December 2019 Printed: 31 December 2019

KEYWORDS

Vibration spectrum Ab initio calculations Infrared spectroscopy Redox active compound Density functional theory Hirshfeld surface analysis

ABSTRACT

The title molecule, *N,N'*-(azanediyl*bis*(2,1-phenylene))*bis*(2-chloropropanamide) (L^{NNN}) was synthesized and characterized by means of Hirshfeld surface analysis and vibrational (FT-IR and RAMAN) studies. Ab-initio Hartree-Fock (HF) and density functional theory (DFT; BLYP, B3LYP, B3PW91 and mPW1PW91) calculations were accomplished using 6-31G(d,p) and 6-311G(d,p) basis sets. The comparison of calculated bond lengths and angles with X-ray crystal structure shows sufficient agreement. The solid phase FT-IR and FT-RAMAN spectra of L^{NNN} have been recorded in the regions 4000-525 cm⁻¹ and 4000-50 cm⁻¹, respectively. A comparative analysis between the calculated and experimental vibrational frequencies was carried out and significant bands were assigned. The results indicated a good correlation between experimental and theoretical IR and RAMAN frequencies. A detailed analysis of the intermolecular interactions *via* Hirshfeld surface analysis and fingerprint plots revealed that supramolecular structure of the L^{NNN} is stabilized mainly by the formation of H···H, C···H, Cl···H ve O···H intermolecular interactions.

Cite this: Eur. J. Chem. 2019, 10(4), 386-402 Journal website: www.eurjchem.com

1. Introduction

Recently, many of research groups focused on the development of highly efficient and selective catalysts [1-7]. The catalytic activity performance of metal complexes depends on the interaction of the metal center and its surrounding ligands. Redox non-innocent or redox active ligands, unlike classical ligands, are actively involved in redox processes [8-22]. So, they supply an opportunity to modify the reactivity of metal complexes. As an example, Smith *et al.* found that the metal-carbon bond formation for Negishi-like cross-coupling of alkyl halides with organozinc reagents can occur via metal-centered oxidative addition steps but without changing the *d*-electron configuration of the metal [23]. The required electrons were supplied by redox active ligands and so, redox active ligands offered selectivity to the metal complex for the catalytic activity.

Considering the facts above, the intent of this study is to perform an experimental and computational work on a potential redox active compound, N,N'-(azanediyl*bis*(2,1-phenylene))*bis*(2-chloropropanamide) (L^{NNN}). The optimized geometric parameters and vibrational frequencies have been calculated using the HF method with 6-31G(d,p) and 6-

311G(d,p) basis sets and similarly with DFT (BLYP, B3LYP, B3PW91 and mPW1PW91) methods along with 6-31G(d,p) and 6-311G(d,p) basis sets. In addition, intermolecular interactions and packing modes present in the solid state of the title compound were visualized by means of the Hirshfeld surface analysis.

2. Experimental

2.1. Instrumentation

The NMR spectra were recorded in CDCl₃ solvent on Bruker Avance III 400 MHz NaNoBay FT-NMR spectrophotometer using tetramethylsilane as an internal standard. FT-IR and FT-RAMAN spectroscopy was used for the identification of vibrational modes in the L^{NNN} molecule. The roomtemperature-attenuated total reflection Fourier transform infrared (FT-IR ATR) spectrum of *N,N'*-(azanediyl*bis*(2,1phenylene))*bis*(2-chloropropanamide) compound was recorded using a Perkin Elmer Spectrum 100 series spectrometer with a ATR prism (4000-525 cm⁻¹; number of scans: 250; resolution: 1 cm⁻¹) (Figure 1).

European Journal of Chemistry

ISSN 2153-2249 (Print) / ISSN 2153-2257 (Online) – Copyright © 2019 The Authors – Atlanta Publishing House LLC – Printed in the USA. This work is published and licensed by Atlanta Publishing House LLC – CC BY NC – Some Rights Reserved. http://dx.doi.org/10.5155/eurichem.10.4.386-402.1921

View Journal Online View Article Online

Figure 2. Experimental (a) and theoretical (b) FT-RAMAN spectrum of L^{NNN} compound.

Nicolet Spectrometer 6700 was used to record the FT-RAMAN spectrum of the title compound in the range of 4000-50 cm⁻¹ at room temperature. The wavelength of the used laser was 780 nm. Figure 2 demonstrates the recorded FT-RAMAN spectrum of the title compound.

2.2. Synthesis

The solvents and chemicals used in the study were commercially obtained from Merck, Sigma-Aldrich and Alfa-Aesar companies and were used without further purification. Precursor materials *bis*(2-nitrophenyl)amine and *bis*(2-aminophenyl)amine were prepared according to the previously published method (Scheme 1) [24-28].

Scheme 1

A solution of 2-chloropropionyl chloride (5 mmol) in acetonitrile (50 mL) was cooled to 0 °C under nitrogen atmosphere. Then, bis(2-aminophenyl)amine (10 mmol) and triethylamine (Et₃N) (10 mmol) was slowly added to this cold solution over 3 h. The mixture was stirred at 0 °C for 1 hr and the mixture temperature were allowed to slowly rise to room temperature. Then, the mixture was stirred again at room temperature for 24 h and the solvent was removed under vacuum. The resulting solid was crystallized from dichloro methane/n-hexane mixture (1:1, v:v) (Scheme 1) [25,26]. N,N'-(Azanediylbis(2, 1-phenylene))bis(2-chloropropanamide) (LNNN): Color: White. Yield: 65%. ¹H NMR (400 MHz, CDCl₃, δ, ppm): 8.51 (s, 2H, NH(CO)), 7.69 (dd, 2H, Ar-H), 7.13 (td, 2H, Ar-H), 7.07 (m, 2H, Ar-H), 6.91 (dd, 2H, Ar-H), 5.74 (s, 1H, NH), 4.53 (q, 2H, CH), 1.71 (d, 6H, CH₃). ¹³C NMR (100 MHz, CDCl₃, δ, ppm): 168.30 (CO), 136.00 (Ar-C), 128.43 (Ar-C), 126.89 (Ar-C), 123.90 (Ar-C), 121.31 (Ar-C), 55.90 (CH), 22.44 (CH₃), 22.41 (CH3). FT-IR (ATR, cm-1): 3397, 3099, 3060, 2980, 1690, 1662, 1651. LC-MS (+ESI, m/z): 380.2 [M+H]+, 279.2, 242.3, 130.2, 102.2.

2.3. Calculation details

The theoretical calculations were carried out with the Gaussian 16W program packages [29]. The calculated results were visualized by means of GaussView 6.0 [30]. In the present work, we have calculated the vibrational frequencies and the geometric parameters of N,N'-(azanediylbis(2,1phenylene))bis(2-chloropropanamide) in the ground state to compare the fundamentals from the experimental vibration frequencies and geometric parameters, by using the Hartree-Fock (HF) [31], the Density functional theory using Becke's three parameter hybrid functionals [32] with Lee, Yang, and Parr correlation functional methods (B3LYP) [33], Becke's exchange functional in combination with the Lee, Yang and Parr correlation functional methods (BLYP) [32,33], the Barone and Adamo's Becke-style one-parameter functional using the modified Perdew-Wang exchange and Perdew-Wang 91 correlation method (mPW1PW91) [34,35], Becke's three parameter exchange functionals with Perdew-Wang exchange functional with Perdew and Wang's gradient correlated functional (B3PW91) [32,36] with the standard 6-31G(d,p) and 6-311G(d,p) basic sets. The frequency values computed at these levels contain known systematic errors [37]. Scaling factor values of 0.9614, 0.9679, 0.9573, 0.9631, 0.9945, 0.9934, 0.9500, 0.9567 0.8992 and 0.9051 for B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3PW91/6-31G(d,p), B3PW91/ 6-311G(d,p), BLYP/6-31G(d,p), BLYP/6-311G(d,p), mPW1 PW91/6-31G(d,p), mPW1PW91/6-311G(d,p), HF/6-31G(d,p) and HF/6-311G(d,p), respectively, can be used to correct these discrepancies [38-44]. Also, optimal scaling factors were calculated for all analyzed methods. The GaussView 6.0 graphical interface of the Gaussian program, which is an animation option that provides a visual representation of the shape of the modes of vibration, provides a way of assigning the calculated wavenumbers [30]. The SQM procedure has

been widely used in the assignment of bands of vibrational spectra due to being a highly successful and well established technique in refining the computerized vibration frequencies to better match the experimental values [45]. So, the vibrational modes were determined according to the potential energy distribution analysis using the SQM program [46]. Using the PAVF 1.0 program, the performance of the used method was quantitatively characterized [47]. The population analysis has also been performed by the natural bond orbital method [48] at B3LYP, BLYP, B3PW91, mPW1PW91 and HF/6-31G(d,p) and 6-311G(d,p) level of theory using the natural bond orbital (NBO) program [49] under the Gaussian 16W program package.

2.4. Hirshfeld surfaces analysis

Analysis of Hirshfeld surfaces and their associated two dimensional fingerprint plots of L^{NNN} compound were calculated by using the CrystalExplorer17 [50]. The Hirshfeld surfaces are mapped with different properties d_{norm} , shape index and curvedness. The d_{norm} is a normalized contact distance, defined in terms of d_e , d_i and the vdW radii of the atoms. The combination of d_e and d_i in the form of a 2D fingerprint plot displays the summary of intermolecular contacts in the crystal.

3. Results and discussion

3.1. Molecular geometry

The molecular structure of N,N'-(azanediylbis(2,1phenylene))bis(2-chloropropanamide) obtained by the single crystal X-ray diffraction method has been previously reported [25,26]. The compound crystallizes triclinic, space group P-1 (no. 2), *a* = 9.4053(6) Å, *b* = 10.8925(8) Å, *c* = 18.5490(13) Å, $\alpha = 76.134(2)^\circ, \beta = 80.859(2)^\circ, \gamma = 79.963(2)^\circ, V = 1803.0(2) \text{ Å}^3,$ Z = 4, T = 99.99 K, μ (MoK α) = 0.377 mm⁻¹, *Dcalc* = 1.401 g/cm³, 149948 reflections measured $(5.956^{\circ} \le 20 \le 50.238^{\circ})$. 6409 unique ($R_{int} = 0.1130$, $R_{sigma} = 0.0328$) which were used in all calculations. The final R_1 was 0.0411 (I > $2\sigma(I)$) and wR_2 was 0.0989 (all data). The optimized geometry parameters were performed by theoretical calculations using the HF and DFT (B3LYP, BLYP, B3PW91, mPW1PW91) methods with 6-31G(d,p) and 6-311G(d,p) basis sets. Full geometry optimization of structure was carried out without any restrictions. The stability of the optimized geometries was confirmed by the absence of imaginary frequencies in the vibrational spectra. The title compound belongs to C_1 point group symmetry. The comparative optimized structural parameters such as bond lengths and bond angles are presented in Table 1 in accordance with the atom numbering scheme illustrated in Figure 3. In addition, the correlation values of theoretical and experimental geometric parameters are presented at the end of Table 1.

 Table 1. Optimized and experimental geometries of H₃L^{NNN} molecule in the ground state *.

 Parameter
 Experimental, Å
 Calculated, Å

		B3LYP		B3PW91		BLYP		mPW1P	W	HF	
		6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311
Bond lengths											
C1-C2	1.505(15)	1.516	1.514	1.512	1.510	1.525	1.523	1.509	1.508	1.515	1.514
C2-Cl3	1.778(8)	1.847	1.845	1.825	1.825	1.880	1.879	1.820	1.818	1.814	1.817
C2-C4	1.520(3)	1.538	1.537	1.535	1.533	1.550	1.549	1.532	1.530	1.530	1.529
C4-05	1.219(3)	1.222	1.214	1.220	1.213	1.235	1.228	1.217	1.210	1.195	1.189
C4-N6	1.345(3)	1.373	1.373	1.369	1.369	1.388	1.388	1.366	1.366	1.357	1.358
N6-C7	1.426(3)	1.417	1.416	1.410	1.410	1.425	1.425	1.408	1.407	1.418	1.418
C7-C8	1.385(3)	1.401	1.401	1.401	1.399	1.415	1.412	1.397	1.397	1.389	1.388
C7-C12	1.404(3)	1.417	1.412	1.412	1.409	1.427	1.425	1.411	1.407	1.397	1.395
C8-C9	1.385(3)	1.392	1.389	1.389	1.387	1.401	1.398	1.388	1.385	1.381	1.379
C9-C10	1.385(3)	1.394	1.393	1.394	1.391	1.406	1.403	1.391	1.389	1.385	1.385
C10-C11 C11 C12	1.302(3)	1.391	1.300	1.300	1.300	1.400	1.397	1.307	1.304	1.300	1.379
C12 N12	1.393(3)	1.405	1.390	1.399	1.390	1.412	1.410	1.399	1.394	1.393	1.392
N13-C14	1.399(3)	1 398	1.410	1.411	1.410	1.427	1.423	1.399	1.409	1 3 9 9	1.403
C14-C15	1.392(3)	1 407	1.398	1.399	1.396	1.123	1 409	1.590	1.393	1.393	1.392
C14-C19	1 406(3)	1 415	1 413	1 413	1.370	1 428	1.105	1 410	1.409	1.398	1.392
C15-C16	1.381(3)	1.392	1.391	1.392	1.389	1.403	1.400	1.388	1.388	1.383	1.383
C16-C17	1.383(3)	1.396	1.393	1.394	1.391	1.406	1.403	1.392	1.389	1.384	1.383
C17-C18	1.379(3)	1.392	1.391	1.392	1.389	1.403	1.400	1.388	1.388	1.383	1.382
C18-C19	1.390(3)	1.395	1.396	1.397	1.394	1.410	1.407	1.391	1.392	1.383	1.382
C19-N20	1.425(3)	1.424	1.416	1.410	1.409	1.425	1.426	1.416	1.407	1.421	1.421
N20-C21	1.344(3)	1.351	1.346	1.343	1.343	1.359	1.360	1.345	1.340	1.339	1.339
C21-O22	1.222(2)	1.237	1.235	1.239	1.233	1.256	1.248	1.232	1.230	1.210	1.205
C21-C23	1.518(3)	1.534	1.535	1.531	1.530	1.547	1.546	1.527	1.527	1.527	1.527
C23-C24	1.514(10)	1.528	1.525	1.523	1.520	1.537	1.535	1.521	1.518	1.526	1.524
C23-Cl25	1.813(3)	1.835	1.834	1.814	1.815	1.866	1.869	1.809	1.808	1.803	1.806
C26-C27	1.537(15)	1.516	1.514	1.512	1.510	1.525	1.523	1.509	1.508	1.515	1.514
C27-Cl28	1.756(5)	1.847	1.845	1.825	1.825	1.880	1.879	1.820	1.818	1.814	1.817
C27-C29	1.517(3)	1.538	1.537	1.535	1.533	1.550	1.549	1.532	1.530	1.530	1.529
C29-O30	1.226(2)	1.222	1.214	1.220	1.213	1.235	1.228	1.217	1.210	1.195	1.189
C29-N31	1.352(3)	1.373	1.373	1.369	1.369	1.388	1.388	1.366	1.366	1.357	1.358
N31-C32	1.428(3)	1.417	1.416	1.410	1.410	1.425	1.425	1.408	1.407	1.418	1.418
032-033	1.385(3)	1.401	1.401	1.401	1.399	1.415	1.412	1.397	1.397	1.389	1.388
C32-C37	1.401(3)	1.417	1.412	1.412	1.409	1.427	1.425	1.411	1.407	1.397	1.395
C34 C2F	1.386(3)	1.392	1.389	1.389	1.387	1.401	1.398	1.388	1.385	1.381	1.379
C2E C26	1.3/3(3)	1.394	1.393	1.394	1.391	1.400	1.405	1.391	1.309	1.305	1.305
C36-C37	1.300(3)	1.391	1.300	1.300	1.300	1.400	1.397	1.307	1.304	1.300	1.375
C37-N38	1.373(3)	1.405	1.370	1.377	1.370	1.412	1.425	1 3 9 9	1.3.74	1.373	1.392
N38-C39	1.400(3)	1 398	1.410	1.411	1.410	1.425	1.423	1 3 9 0	1.405	1 3 9 9	1.403
C39-C40	1.397(3)	1.407	1.398	1.399	1.396	1.412	1.409	1.402	1.393	1.393	1.392
C39-C44	1.398(3)	1.415	1.413	1.413	1.411	1.428	1.425	1.410	1.409	1.398	1.397
C40-C41	1.380(3)	1.392	1.391	1.392	1.389	1.403	1.400	1.388	1.388	1.383	1.383
C41-C42	1.383(3)	1.396	1.393	1.394	1.391	1.406	1.403	1.392	1.389	1.384	1.383
C42-C43	1.385(3)	1.392	1.391	1.392	1.389	1.403	1.400	1.388	1.388	1.383	1.382
C43-C44	1.385(3)	1.395	1.396	1.397	1.394	1.410	1.407	1.391	1.392	1.383	1.382
C44-N45	1.427(3)	1.424	1.416	1.410	1.409	1.425	1.426	1.416	1.407	1.421	1.421
N45-C46	1.336(3)	1.351	1.346	1.343	1.343	1.359	1.360	1.345	1.340	1.339	1.339
C46-O47	1.218(3)	1.237	1.235	1.239	1.233	1.256	1.248	1.232	1.230	1.210	1.205
C46-C48	1.514(3)	1.534	1.535	1.531	1.530	1.547	1.546	1.527	1.527	1.527	1.527
C48-C49	1.554(15)	1.528	1.525	1.523	1.520	1.537	1.535	1.521	1.518	1.526	1.524
C48-Cl50	1.766(6)	1.835	1.834	1.814	1.815	1.866	1.869	1.809	1.808	1.803	1.806
<u>r</u>		0.9931	0.9929	0.9932	0.9933	0.9901	0.9906	0.9939	0.9936	0.9962	0.9959
Bond angles		100.00									
C1-C2-CI3	111.30(11)	109.99	109.93	110.17	110.11	109.69	109.66	110.23	110.17	110.23	110.15
	114.80(10)	111.90	112.18	111.63	111.95	112.12	112.41	111.60	111.85	112.18	112.43
CI3-C2-C4	108.80(4)	108.11	107.20	107.36	107.16	107.25	107.19	108.25	107.10	108.25	108.04
C2-C4-05	123.34(19)	121.12	121.27	121.20	121.37	121.20	121.40	121.18	121.37	121.04	121.20
05 C4 N6	113.40(17)	113.05	115.50	115.49	115.24	115.47	115.29	115.55	115.25	114.15	113.04
C4-N6-C7	125.20(2) 125.14(17)	125.21	125.55	125.51	125.55	125.27	125.50	125.27	126.57	124.01	124.94
N6-C7-C8	123.14(17) 121 $42(10)$	123.92	120.70	120.32	120.07	120.90	120.90	123.07	120.37	124.34	124.34
N6-C7-C12	121.42(17) 118 37(18)	118.62	118 76	118 73	118 71	118.83	118.88	118 54	118.61	119 18	119.20
C8-C7-C12	120 21(19)	119.50	110.70	110.75	110.71	110.05	119.00	119.53	110.01	119.10	119.20
C7-C8-C9	120.21(1)	120.67	120.53	120.52	120.53	120.55	120.60	120.65	120.45	120.77	120.79
C8-C9-C10	119.10(2)	120.01	120.32	120.34	120.33	120.38	120.30	120.00	120.38	119.56	119.59
C9-C10-C11	120.70(2)	119.90	119.61	119.59	119.59	119.61	119.67	119.91	119.58	120.15	120.06
C10-C11-C12	120.70(2)	121.01	121.01	120.98	120.98	121.04	121.07	120.96	120.91	120.87	120.92
C7-C12-C11	118.45(19)	118.89	119.27	119.31	119.32	119.22	119.14	118.94	119.40	118.78	118.84
C7-C12-N13	117.71(18)	120.11	121.32	121.36	121.25	121.54	121.39	120.03	121.14	120.29	120.50
C11-C12-N13	123.79(19)	120.93	119.38	119.30	119.41	119.19	119.43	120.97	119.43	120.86	120.60
C12-N13-C14	129.42(18)	126.37	122.60	122.19	122.37	122.73	123.35	126.03	122.12	125.19	124.64
N13-C14-C15	123.90(19)	123.11	123.12	123.14	123.12	123.05	122.95	123.14	123.22	123.37	123.38
N13-C14-C19	117.80(18)	118.93	118.10	118.03	118.05	118.22	118.37	118.85	117.91	118.46	118.40
C15-C14-C19	118.24(19)	117.95	118.78	118.83	118.83	118.73	118.68	118.00	118.86	118.16	118.22
C14-C15-C16	120.50(2)	120.81	120.66	120.58	120.62	120.63	120.70	120.77	120.58	120.76	120.80
C15-C16-C17	121.10(2)	120.69	120.16	120.15	120.15	120.20	120.21	120.70	120.17	120.61	120.54

Polat et al. / European Journal of Chemistry 10 (4) (2019) 386-402

Table 1. Continued.

	Parameter	Experimental, Å	Calculate	ed, Å								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			B3LYP		B3LYP		B3LYP		B3LYP		B3LYP	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311
C16-C17-C161 119.20(2) 119.30 120.11 120.13 120.13 120.14 119.16 119.16 C17-C18-C19 120.20(2) 120.47 120.03 120.22 120.22 120.22 120.22 120.24 120.74 120.06 120.44 119.94 119.36 119.37 120.65 120.65 120.11 120.25 120.21 120.23 120.22 123.34 123.34 123.34 123.34 123.34 123.34 123.34 123.34 123.34 123.34 123.34 123.34 123.34 124.45 124.51 117.50 117.71 117.11 117.51 117.11 117.51 117.51 117.51 117.51 117.51 117.51 117.51 117.51 <td< td=""><td>Bond angles</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Bond angles											
C17-C18-C19 120.50(2) 120.47 120.00 119.91 119.93 120.93 120.04 120.47 120.28 120.22 120.22 120.21 120.71 120.67 120.26 C14-C19-VR20 112.25(18) 118.36 116.27 116.02 116.32 116.32 116.32 116.32 116.32 115.36 123.44 124.64 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 124.64 124.81 114.81 114.92 117.91 117.65 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.34 113.91 118.92 110.75 110.75 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 117.33 <t< td=""><td>C16-C17-C18</td><td>119.20(2)</td><td>119.30</td><td>120.11</td><td>120.18</td><td>120.13</td><td>120.19</td><td>120.09</td><td>119.30</td><td>120.14</td><td>119.18</td><td>119.18</td></t<>	C16-C17-C18	119.20(2)	119.30	120.11	120.18	120.13	120.19	120.09	119.30	120.14	119.18	119.18
C14-C19-C18 120.49(19) 120.76 120.23 120.22 120.25 120.21 120.78 120.24 120.67 120.66 C14-C19-N20 120.25(19) 120.85 123.44 123.50 123.44 123.48 124.45 124.44 124.64 124.41 124.63 124.53 124.53 124.53 124.53 124.53 124.53 124.53 124.53 124.54 110.53 113.45 114.53	C17-C18-C19	120.50(2)	120.47	120.00	119.91	119.98	119.93	120.06	120.44	119.94	120.58	120.63
$ \begin{array}{c} 14-C19-N20 & 119.26(18) & 118.36 & 116.27 & 116.06 & 116.12 & 116.32 & 116.26 & 118.22 & 115.95 & 118.54 & 118.49 \\ (15)-V20-C21 & 122.36(17) & 125.56 & 129.11 & 129.06 & 129.21 & 129.30 & 122.08 & 129.18 & 124.94 & 125.18 \\ V20-C21-02 & 123.60(12) & 124.4 & 124.48 & 124.46 & 124.48 & 124.48 & 124.48 & 124.48 & 124.48 & 124.48 & 124.48 & 124.48 & 124.48 & 124.48 & 124.48 & 124.48 & 124.46 & 124.51 & 124.70 & 117.94 & 117.69 & 117.29 & 117.94 & 117.56 & 117.97 & 117.87 & 117.57 & 117.18 & 117.07 & 117.29 & 117.47 & 117.57 & 117.20 & 117.29 & 117.49 & 117.57 & 117.20 & 117.29 & 117.49 & 117.57 & 117.50 & 117.29 & 117.49 & 117.57 & 117.20 & 117.29 & 117.48 & 110.48 & 110.70 & 124.22 & 122.26 & 110.40(61.6) & 113.30 & 113.68 & 113.79 & 113.77 & 113.57 & 113.42 & 113.70 & 113.79 & 113.79 & 113.73 & 113.72 & 113.72 & 113.72 & 113.24 & 113.70 & 113.29 & 113.79 & 113.73 & 113.72 & 113.72 & 113.72 & 113.72 & 113.72 & 113.72 & 113.72 & 113.72 & 113.72 & 113.72 & 113.72 & 113.72 & 113.55 & 113.42 & 113.70 & 110.66 & 109.93 & 100.72 & 107.16 & 107.55 & 107.19 & 108.25 & 107.10 & 108.26 & 108.04 & 127.229.03 & 122.12(19) & 121.12 & 121.26 & 121.00 & 121.37 & 121.26 & 121.40 & 121.18 & 112.48 & 112.48 & 112.48 & 122.48 & 122.48 & 122.48 & 122.49 & 122.12 & 123.51 & 113.54 & 113.54 & 113.64 & 1$	C14-C19-C18	120.49(19)	120.76	120.23	120.28	120.22	120.25	120.21	120.78	120.24	120.67	120.60
C18-C19-N20 120.25(19) 123.44 123.59 123.44 123.46 123.46 123.46 123.46 123.46 123.46 123.46 123.46 124.41 124.64 124.41 124.63 124.45 124.46 124.46 124.41 124.63 124.45 124.46 124.46 124.41 124.63 124.45 124.46 124.46 124.41 124.63 124.45 124.18 124.76 114.76 117.77 117.87 117.67 117.91 117.67 117.49 117.49 117.45 117.76 117.79 117.87 110.78 110.78 110.78 110.78 110.78 110.78 110.78 110.78 112.48 117.	C14-C19-N20	119.26(18)	118.36	116.27	116.06	116.12	116.32	116.62	118.22	115.95	118.54	118.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18-C19-N20	120.25(19)	120.85	123.44	123.59	123.60	123.34	123.08	120.97	123.76	120.76	120.89
N20-C21-C22 123.60(2) 124.24 124.64 124.81 124.85 124.85 124.85 124.56 124.51 124.52 N20-C21-C23 122.76(19) 117.69 117.43 117.53 117.36 117.29 117.75 117.87 117.55 117.57 117.55 117.57 117.55 117.57 117.55 117.57 117.55 117.57 117.55 117.57	C19-N20-C21	123.45(17)	125.56	129.11	129.06	129.21	129.30	129.20	125.38	129.18	124.94	125.13
N20-C21-C23 114.63(18) 118.02 117.90 117.91 117.95 117.83 117.83 117.87 <t< td=""><td>N20-C21-O22</td><td>123.60(2)</td><td>124.24</td><td>124.80</td><td>124.64</td><td>124.81</td><td>124.63</td><td>124.85</td><td>124.18</td><td>124.76</td><td>124.51</td><td>124.62</td></t<>	N20-C21-O22	123.60(2)	124.24	124.80	124.64	124.81	124.63	124.85	124.18	124.76	124.51	124.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N20-C21-C23	114.63(18)	118.02	117.90	117.91	117.65	117.97	117.83	117.91	117.67	118.28	118.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	022-C21-C23	122.76(19)	117.69	117.29	117.43	117.53	117.36	117.29	117.87	117.57	117.11	117.09
C21-C23-C25 110.46(16) 113.30 113.68 113.79 113.72 113.72 113.75 113.42 113.70 113.79 113.72 C24-C23-C25 110.70(5) 109.91 109.957 109.80 109.68 109.68 109.68 109.23 110.17 110.11 10.66 110.23 110.17 110.23 110.17 110.23 110.17 110.23 110.17 110.23 110.17 110.23 110.15 112.42 12.44 111.85 113.23 113.41 113.24 113.24 113.24 113.24 113.24 113.24 113.24 113.24 113.24 113.23 113.34 113.49 113.24 113.23 113.34 113.49 113.24 113.23 113.34 113.44 113.24 113.23 113.34 113.44 113.24 113.23 113.23 113.43 113.44 113.24 113.23 113.34 113.44 113.44 113.43 113.44 113.43 113.44 113.43 113.44 113.43 113.44 113.44 113.44 113.44 113.44 113.44 113.44 112.04	C21-C23-C24	112.30(5)	111.32	111.45	111.08	111.32	111.70	111.87	110.99	111.28	110.48	110.73
C24-C23-C25 110.70(5) 109.71 109.57 109.80 109.68 109.68 109.28 109.22 109.70 110.60 109.93 C26-C27-C29 105.50(9) 111.90 112.18 111.63 111.95 112.21 112.41 111.65 112.23 110.15 110.23 110.15 C27-C29-030 122.12(19) 121.12 121.20 121.20 121.20 121.20 121.21 121.41 113.23 114.43 113.44 C27-C29-030 122.12(19) 125.21 125.35 125.31 125.39 125.27 125.00 122.67 126.08 126.67 126.98 126.67 124.94 C29-V31-C32 119.61(18) 118.62 118.77 118.73 118.71 118.88 118.64 118.61 119.17 119.02 C32-C37 120.84(19) 119.02 119.23 119.22 119.14 119.43 119.24 119.86 119.79 C32-C37-C34 120.00(2) 120.01 120.52 120.05 120.0	C21-C23-Cl25	110.46(16)	113.30	113.68	113.79	113.72	113.37	113.55	113.42	113.70	113.79	113.73
$\begin{array}{c} 226-C27-C128 & 107.00(10) & 109.99 & 109.93 & 110.17 & 110.11 & 109.66 & 110.26 & 110.27 & 110.17 & 110.23 & 110.15 \\ C26-C27-C29 & 109.50(9) & 111.90 & 112.18 & 111.63 & 111.95 & 112.21 & 111.60 & 111.85 & 112.48 \\ C27-C29-030 & 122.12(19) & 121.12 & 121.26 & 121.20 & 121.37 & 121.26 & 121.40 & 121.18 & 121.41 & 111.60 & 111.85 & 113.44 \\ C27-C29-N31 & 114.45(18) & 113.65 & 113.38 & 113.44 & 113.47 & 113.29 & 113.53 & 113.23 & 114.13 & 113.84 \\ O20-C29-N31 & 123.40(2) & 125.21 & 125.35 & 125.31 & 125.39 & 125.27 & 125.40 & 124.48 & 124.94 \\ O30-C29-N31 & 123.50(17) & 125.92 & 126.70 & 126.52 & 126.67 & 126.98 & 125.67 & 126.57 & 126.37 & 124.34 & 124.54 \\ N31-C32-C33 & 119.61(18) & 121.88 & 122.00 & 122.03 & 122.07 & 122.00 & 121.94 & 121.92 & 122.15 & 120.96 & 121.00 \\ N31-C32-C37 & 120.84(19) & 119.50 & 119.23 & 119.23 & 119.22 & 119.16 & 119.8 & 119.53 & 119.24 & 119.79 \\ C32-C33-C34 & 120.30(2) & 120.07 & 120.52 & 120.52 & 120.53 & 120.50 & 120.60 & 120.65 & 120.45 & 120.77 & 120.79 \\ C33-C32-C37 & 120.84(19) & 119.50 & 119.23 & 119.23 & 119.23 & 119.22 & 119.16 & 119.67 & 119.91 & 119.58 & 120.51 & 120.06 \\ C33-C32-C37 & 120.05(2) & 121.01 & 120.32 & 120.34 & 120.33 & 120.30 & 120.00 & 120.38 & 119.56 & 119.59 \\ C34-C35-C36 & 121.00(2) & 119.90 & 119.61 & 119.59 & 119.61 & 119.67 & 119.91 & 119.58 & 120.15 & 120.06 \\ C35-C36-C37 & 120.50(2) & 121.01 & 121.32 & 121.36 & 121.25 & 121.54 & 121.39 & 120.30 & 120.41 & 120.92 & 120.54 \\ C32-C37-C36 & 118.07(19) & 118.89 & 119.27 & 119.31 & 119.32 & 119.22 & 119.14 & 118.44 & 119.40 & 118.78 & 118.84 \\ C32-C37-N38 & 112.7.0(18) & 120.31 & 123.21 & 123.31 & 119.23 & 119.22 & 119.14 & 118.44 & 119.46 & 118.48 \\ C32-C37-N38 & 112.7.0(18) & 120.31 & 123.41 & 123.12 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & 123.29 & 123.41 & $	C24-C23-Cl25	110.70(5)	109.71	109.57	109.80	109.68	109.48	109.28	109.92	109.70	110.06	109.93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26-C27-Cl28	107.00(10)	109.99	109.93	110.17	110.11	109.69	109.66	110.23	110.17	110.23	110.15
$ \begin{array}{c} (226-C27-C29 & 109.90(3) & 108.11 & 107.20 & 107.36 & 107.16 & 107.25 & 107.19 & 108.25 & 107.10 & 108.26 & 108.04 \\ (277-C29-030 & 122.12(19) & 121.12 & 121.26 & 121.20 & 121.47 & 121.46 & 121.18 & 121.37 & 121.04 & 121.20 \\ (27-C29-N31 & 114.45(18) & 113.65 & 113.38 & 113.49 & 113.24 & 113.47 & 113.29 & 113.53 & 113.23 & 114.13 & 113.84 \\ (30-C29-N31-C22 & 123.55(17) & 125.92 & 125.53 & 125.51 & 125.57 & 126.57 & 126.57 & 126.43 & 124.94 \\ (229-N31-C32-C33 & 119.65(18) & 121.88 & 122.00 & 122.03 & 122.07 & 122.08 & 125.67 & 126.57 & 126.43 & 124.94 \\ (239-N31-C32-C37 & 119.65(18) & 118.62 & 118.77 & 118.73 & 118.71 & 118.88 & 118.84 & 118.64 & 119.17 & 119.20 \\ (33-C32-C37 & 120.84(19) & 119.50 & 119.23 & 119.23 & 119.22 & 119.16 & 119.18 & 119.53 & 119.24 & 119.86 & 119.79 \\ (23-C33-C34-C35 & 119.30(2) & 120.01 & 120.32 & 120.44 & 120.33 & 120.30 & 120.00 & 120.38 & 119.56 & 119.59 \\ (23-C33-C34-C35 & 119.30(2) & 120.01 & 120.34 & 120.34 & 120.30 & 120.00 & 120.38 & 119.56 & 119.59 \\ (23-C33-C34-C35 & 120.50(2) & 119.00 & 119.61 & 119.59 & 119.61 & 119.67 & 119.91 & 119.58 & 120.15 & 120.06 \\ (23-C37-C36 & 118.07(19) & 118.89 & 119.27 & 119.31 & 119.32 & 119.22 & 119.14 & 119.64 & 119.47 & 110.29 & 120.08 & 120.04 \\ (23-C37-N38 & 117.71(18) & 120.11 & 121.32 & 121.36 & 121.24 & 121.39 & 120.48 & 120.49 & 120.86 & 120.60 \\ (23-C37-N38 & 124.20(2) & 120.93 & 119.38 & 119.30 & 119.41 & 119.19 & 119.43 & 120.97 & 119.43 & 120.86 & 120.60 \\ (23-N38-C39-C44 & 118.07(19) & 118.93 & 118.11 & 118.03 & 118.65 & 118.62 & 118.67 & 118.84 & 118.46 & 118.46 \\ (40-C39-C40-C41 & 122.60(2) & 12.79 & 122.37 & 122.37 & 122.33 & 122.03 & 122.12 & 122.51 & 124.63 \\ N38-C39-C40 & 123.80(2) & 123.11 & 123.12 & 123.14 & 123.12 & 123.05 & 120.77 & 120.58 & 120.76 & 120.80 \\ (23-C43-C44 & 118.37(19) & 118.93 & 118.11 & 118.03 & 118.65 & 118.62 & 118.60 & 118.66 & 118.46 & 118.46 \\ (43-C44-C43 & 119.10(2) & 120.61 & 120.61 & 120.15 & 120.07 & 120.77 & 120.58 & 120.76 & 120.86 \\ (239-C40-C41 & 122.60(2) & 120.61 & 120.61 & 120.$	C26-C27-C29	105.50(9)	111.90	112.18	111.63	111.95	112.12	112.41	111.60	111.85	112.18	112.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl28-C27-C29	109.90(3)	108.11	107.20	107.36	107.16	107.25	107.19	108.25	107.10	108.26	108.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27-C29-O30	122.12(19)	121.12	121.26	121.20	121.37	121.26	121.40	121.18	121.37	121.04	121.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27-C29-N31	114.45(18)	113.65	113.38	113.49	113.24	113.47	113.29	113.53	113.23	114.13	113.84
$\begin{array}{c} C29-N31-C32 & 123.5(1^7) & 125.92 & 126.70 & 126.52 & 126.67 & 126.98 & 126.68 & 126.67 & 126.57 & 124.34 & 124.54 \\ N31-C32-C37 & 119.55(18) & 121.88 & 122.00 & 122.03 & 122.07 & 122.00 & 121.94 & 121.92 & 122.15 & 120.96 & 121.00 \\ C33-C32-C37 & 120.84(19) & 119.50 & 119.23 & 119.23 & 119.22 & 119.16 & 119.18 & 119.53 & 119.44 & 119.86 & 119.77 \\ C32-C33-C34 & 120.30(2) & 120.67 & 120.53 & 120.52 & 120.53 & 120.52 & 120.60 & 120.65 & 120.65 & 120.45 & 120.77 & 120.79 \\ C33-C34-C35 & 119.30(2) & 120.01 & 120.32 & 120.34 & 120.33 & 120.38 & 120.30 & 120.00 & 120.38 & 119.56 & 119.59 \\ C34-C35-C36 & 121.00(2) & 119.90 & 119.61 & 119.59 & 119.59 & 119.61 & 119.67 & 119.91 & 119.58 & 120.15 & 120.06 \\ C35-C36-C37 & 120.50(2) & 121.01 & 121.01 & 120.98 & 120.98 & 121.04 & 121.07 & 120.96 & 120.91 \\ C32-C37-C36 & 118.07(19) & 118.89 & 119.27 & 119.31 & 119.32 & 119.22 & 119.14 & 118.94 & 119.40 & 118.78 & 118.84 \\ C32-C37-N38 & 117.71(18) & 120.11 & 121.32 & 121.36 & 121.25 & 121.54 & 121.39 & 120.03 & 121.14 & 120.29 & 120.50 \\ C37-N38-C39 & 128.16(18) & 126.37 & 122.59 & 122.19 & 122.37 & 122.35 & 126.03 & 122.12 & 125.19 & 124.63 \\ N38-C39-C44 & 123.80(2) & 123.11 & 123.12 & 123.16 & 118.65 & 118.22 & 118.37 & 118.85 & 117.92 & 118.46 & 118.40 \\ C40-C39-C44 & 118.17(19) & 118.93 & 118.11 & 118.03 & 118.02 & 118.68 & 118.00 & 118.46 & 118.40 \\ C40-C39-C44 & 118.00(2) & 17.95 & 118.78 & 118.83 & 118.3 & 118.73 & 118.68 & 118.00 & 118.46 & 118.42 \\ C44-C43-C43 & 119.10(2) & 120.61 & 120.16 & 120.15 & 120.20 & 120.71 & 120.51 & 120.76 & 120.84 \\ C40-C44-C43 & 119.10(2) & 120.61 & 120.16 & 120.15 & 120.20 & 120.71 & 120.61 & 120.54 \\ C44-C43 & 121.00(2) & 120.67 & 120.23 & 120.28 & 120.62 & 120.63 & 120.77 & 120.61 & 120.54 \\ C44-C43 & 121.00(2) & 120.67 & 120.23 & 120.28 & 120.25 & 120.21 & 120.78 & 120.76 & 120.84 \\ C49-C42-C43 & 119.10(2) & 120.76 & 120.23 & 120.28 & 120.20 & 120.31 & 120.48 & 118.46 & 118.42 \\ C44-C43-C43 & 121.00(2) & 120.67 & 120.31 & 120.66 & 120.61 & 120.15 & 120.20 & 120.31 & 120.64 & $	030-C29-N31	123.40(2)	125.21	125.35	125.31	125.39	125.27	125.30	125.27	125.40	124.81	124.94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C29-N31-C32	123.35(17)	125.92	126.70	126.52	126.67	126.98	126.98	125.67	126.57	124.34	124.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N31-C32-C33	119.61(18)	121.88	122.00	122.03	122.07	122.00	121.94	121.92	122.15	120.96	121.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N31-C32-C37	119.55(18)	118.62	118.77	118.73	118.71	118.83	118.88	118.54	118.61	119.17	119.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33-C32-C37	120.84(19)	119.50	119.23	119.23	119.22	119.16	119.18	119.53	119.24	119.86	119.79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32-C33-C34	120.30(2)	120.67	120.53	120.52	120.53	120.55	120.60	120.65	120.45	120.77	120.79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33-C34-C35	119.30(2)	120.01	120.32	120.34	120.33	120.38	120.30	120.00	120.38	119.56	119.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34-C35-C36	121.00(2)	119.90	119.61	119.59	119.59	119.61	119.67	119.91	119.58	120.15	120.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C35-C36-C37	120.50(2)	121.01	121.01	120.98	120.98	121.04	121.07	120.96	120.91	120.87	120.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32-C37-C36	118.07(19)	118.89	119.27	119.31	119.32	119.22	119.14	118.94	119.40	118.78	118.84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32-C37-N38	117.71(18)	120.11	121.32	121.36	121.25	121.54	121.39	120.03	121.14	120.29	120.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36-C37-N38	124.20(2)	120.93	119.38	119.30	119.41	119.19	119.43	120.97	119.43	120.86	120.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C37-N38-C39	128.16(18)	126.37	122.59	122.19	122.37	122.73	123.35	126.03	122.12	125.19	124.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N38-C39-C40	123.80(2)	123.11	123.12	123.14	123.12	123.05	122.95	123.14	123.22	123.37	123.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N38-C39-C44	118.17(19)	118.93	118.11	118.03	118.05	118.22	118.37	118.85	117.92	118.46	118.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C40-C39-C44	118.00(2)	117.95	118.78	118.83	118.83	118.73	118.68	118.00	118.86	118.16	118.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C39-C40-C41	120.60(2)	120.81	120.66	120.58	120.62	120.63	120.70	120.77	120.58	120.76	120.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C40-C41-C42	121.00(2)	120.69	120.16	120.16	120.15	120.20	120.21	120.70	120.17	120.61	120.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C41-C42-C43	119.10(2)	119.30	120.11	120.18	120.13	120.19	120.09	119.30	120.14	119.18	119.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42-C43-C44	120.30(2)	120.47	120.00	119.91	119.98	119.93	120.06	120.44	119.94	120.58	120.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C39-C44-C43	121.10(2)	120.76	120.23	120.28	120.22	120.25	120.21	120.78	120.24	120.67	120.60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C39-C44-N45	118.91(18)	118.36	116.27	116.06	116.12	116.32	116.62	118.22	115.95	118.54	118.48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C43-C44-N45	120.00(2)	120.85	123.44	123.59	123.60	123.34	123.08	120.97	123.76	120.76	120.89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C44-N45-C46	122.10(17)	125.56	129.11	129.06	129.21	129.30	129.20	125.38	129.18	124.94	125.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N45-C46-O47	122.10(2)	124.24	124.80	124.65	124.81	124.63	124.85	124.18	124.76	124.51	124.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N45-C46-C48	115.30(18)	118.02	117.90	117.91	117.65	117.97	117.83	117.91	117.67	118.28	118.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	047-C46-C48	122.50(2)	117.69	117.29	117.43	117.53	117.36	117.29	117.87	117.57	117.11	117.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C46-C48-C49	110.70(10)	111.32	111.45	111.08	111.32	111.70	111.87	110.99	111.28	110.48	110.73
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C46-C48-C150	110.20(3)	113.30	113.68	113.79	113.72	113.37	113.55	113.42	113.70	113.79	113.73
r 0.9175 0.8450 0.8419 0.8451 0.8525 0.9192 0.8424 0.9101 0.9035	C49-C48-C150	111.60(11)	109.71	109.57	109.80	109.68	109.48	109.28	109.92	109.70	110.06	109.93
	r	()	0.9175	0.8450	0.8419	0.8444	0.8451	0.8525	0.9192	0.8424	0.9101	0.9035

* 6-31: 6-31G(d,p); 6-311: 6-311G(d,p); The atom numbering scheme given in Figure 3(a).

On Table 1, it can be seen that, the theoretical and experimental structure parameters obtained in this study were found to be both in harmony with each other and experimental one. In the bond length calculations, the best correlation (r = 0.9962) was found for the HF/6-31G(d,p) method, and the maximum difference between the theoretical and experimental bond lengths (C27-Cl28) was 0.058 Å. In the bond angle calculations, the best correlation (r = 0.9192) was found for the mPW1PW91/6-31G(d,p) method, and the maximum difference between the theoretical and experimental bond angles (C26-C27-C29) was 6.10°. We discovered some minor differences between the experimental (solid phase) and the theoretical (gas phase) structure parameters of the title compound. The experimental structure parameters of title compound are obtained from solid phase and it is clear, that the solid phase of the compounds includes various crystal interactions [25,26,39-44].

3.2. Vibrational assignments

The theoretical calculations were performed to obtain the harmonic frequencies, RAMAN activities and IR intensities required for the vibrational assignment of the experimental spectra of the title compound. The theoretical values were

calculated via the HF and DFT (B3LYP, B-LYP, B3PW91, mPW1PW91) methods with the 6-31G (d, p) and 6-311G(d, p) basis sets. The title compound molecule possesses no symmetry elements and belongs to the C1 point group symmetry. The title molecule consists of 88 (2×44) atoms, which undergo 258 normal modes of vibration. The calculated frequencies, measured RAMAN and IR band positions and their assignments along with corresponding potential energy distribution (PED) contributions are summarized in Table 2. Based on the normal coordinate analysis (NCA) IR and RAMAN spectral wavenumbers have been assigned. The vibrational assignments for different functional groups have been discussed below. The recorded FT-IR and FT-RAMAN spectra of the compound are also presented with the calculated frequencies in Figure 1 and 2, respectively. The vibrational band assignments have been made by using both the animation option of the GaussView 6.0 graphical interface for the Gaussian 16W program [29,30] and the SQM 2.0 program [46]. All the calculated spectra were found to be in good accordance with the experimental ones. Considering Table 2, it can be concluded that experimental bases better aligned with the scaled fundamentals and have a better correlation with B3LYP/6-31G(d,p) than the other calculation methods.

Figure 3. The optimized geometry of L^{NNN} molecule calculated at B3LYP/6-31G(d,p) level (a) and a view of the molecular structure of L^{NNN} molecule with displacement ellipsoids drawn at the 50% probability level [25] (b).

Overall better performance of the used calculation methods can be quantitatively characterized by using the mean absolute percentage error, mean absolute error, root mean square values (RMS) and coefficients of correlation (r)between the theoretically calculated and experimentally observed vibration frequencies (Table 3). All these values were calculated in this study by the PAVF 1.0 program [47] according to Scott and Radom [38]. The r values for all DFT methods were greater than 0.9993. We calculated the optimal scaling factors, which are crucial for IR spectral predictions, using the PAVF 1.0 program [47]. Without accounting for different vibrations, only single-uniform scaling factors were calculated. The values obtained are 0.9615, 0.9675, 0.9595, 0.9647, 0.9922, 0.9970, 0.9524, 0.9585, 0.9023 ve 0.9078 for the B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3PW91/6-31G(d,p), B3PW91/6-311G(d,p), B-LYP/6-31G(d,p), B-LYP/6-311G(d,p), mPW1PW91/6-31G(d,p), mPW1PW91/6-311G (d,p), HF/6-31G(d,p) and HF/6-311G(d,p), methods, respecttively. They are very close to those recommended by Scott and Radom [47] for the same level of theory.

The N-H stretching vibrations of aromatic amines arise in the range of 3340-3520 cm⁻¹ [51]. The symmetric and antisymmetric stretching modes (Observed: 3413, 3404, 3397 cm⁻¹, Calculated: 3462, 3422, 3363 cm⁻¹) are assigned in the spectra of the title compound in the appropriate range. The difference between calculated and observed N-H stretching modes can be explained by the hydrogen bonds which occur in the solid phase.

The C=O stretching vibrations arise in the region 1710-1680 cm⁻¹ [52]. In the IR spectrum of title compound, the C=O stretching vibrations are found at 1690, 1662 and 1651 cm⁻¹ and were calculated at 1720, 1656 and 1646 cm⁻¹.

In general, an aromatic C-H stretching vibrations occurs in the region 3100-3000 cm⁻¹ [53-55] and they are affected by the nature of substituent. The title compound has two aromatic groups which have eight C-H adjacent moieties. These C-H stretching modes contributed to five different bands in the RAMAN spectrum of the title compound, located at 3136, 3109, 3092, 3074 and 3069 cm⁻¹ and five bands in the IR spectrum at 3136, 3118, 3099, 3076 and 3060 cm⁻¹ which were in agreement with the calculated ones. The PED contribution of these stretching modes was calculated as 73-100%, meaning that these local coordinates fully explain the C-H aromatic vibration modes.

The symmetric (v_sCH₃) and asymmetric (v_{as}CH₃) stretching modes are usually observed in the range between 3050 and 2950 cm⁻¹ [56]. Our theoretical calculations for the title compound locate these modes for methyl group at the following wavenumbers: v_{as}CH₃: 3048, 3036, 3029, 3016 and 3015, and v_sCH₃: 3013, 2949 and 2944 cm⁻¹. They agree well with the experimental values (Table 2).

 Table 2. Vibrational wavenumbers obtained for L^{NNN} at 6-31G(d,p) level.

No	Exp. IR	RAMAN	B3LYP					Assignments,
	(cm ⁻¹)	(cm-1)	Unscaled	Scaled	Scaled	IR Int.	RAMAN activity	PED (%)
			(cm-1)	(cm-1)	(cm-1)	(km/mol)	(A ⁴ /amu)	
1	3413	3407	3601	3462	3462	165.36	0.01	NH 100
2	2412	2407	2601	2462	2462	0.01	572.06	Willing, 100
2	3415	3407	3601	3402	3402	0.01	5/2.00	VNn _{ring} , 97
3	3404	3407	3559	3421	3422	0.01	166.41	VNH _{Carb} , 97
4	3404	3407	3558	3421	3422	135.07	0.01	vNH _{Carb} , 96
5	3397	3397	3498	3363	3363	709.45	0.02	vNH _{Carb} , 90
6	3397	3397	3497	3362	3363	0.03	462.97	vNH _{Carb} , 91
7	3136	3136	3263	3137	3137	0.22	140.03	vCHarom, 100, svm
8	3136	3136	3263	3137	3137	2.26	13 35	vCH _{arem} 99 svm
a	3110	2100	3203	3109	3108	2.20	2 11	VCH 89 sym
10	2110	2100	3232	2100	2100	2.20	2.11	vCll_rom, 00, syll
10	3118	3109	3232	3108	3108	0.01	399.95	VCH _{arom} , 88, Sym
11	3099	3092	3224	3100	3100	9.00	0.05	vCH _{arom} , 83, sym
12	3099	3092	3224	3100	3100	0.01	176.26	vCH _{arom} , 82, sym
13	3099	3092	3216	3092	3092	16.18	0.01	vCH _{arom} , 83, sym
14	3099	3092	3216	3092	3092	0.01	237.82	vCH _{arom} , 82, sym
15	3076	3074	3209	3085	3086	0.01	279 89	vCHarom 77, asym
16	3076	3074	3209	3085	3086	20.47	0.01	$\nu CH = 77$ asym
17	3070	2074	3207	2002	2000	2).47	426.27	vCliarom, 77, asylin
1/	3076	3074	3205	3082	3082	0.01	430.27	VCHarom, 73, asym
18	3076	3074	3205	3082	3082	54.32	0.01	vCH _{arom} , 73, asym
19	3060	3069	3192	3068	3069	0.01	166.92	vCH _{arom} , 78, asym
20	3060	3069	3192	3068	3069	9.19	0.07	vCH _{arom} , 78, asym
21	3060	3069	3189	3066	3066	5.63	0.02	vCH _{arom} , 83, asym
22	3060	3069	3189	3066	3066	0.01	140.03	vCHarom, 83, asym
23	3045	3045	3171	3048	3049	11 23	0.01	vCH_{maxi} asym $80 \pm vCH$ 15
23	2045	2045	2171	2040	2040	0.01	0.01	vCII as agrim 00 + vCII, 15
24	5045	3045	51/1	3046	3046	0.01	01.72	VCHmetil, aSyIII, 60 + VCH, 15
25	3045	3045	3158	3036	3037	10.60	0.04	vCH_{metil} , asym, 44 + vCH , 43
26	3045	3045	3158	3036	3037	0.01	128.03	νCH, 44 + νCH _{metil} , asym, 43
27	3045	3045	3151	3029	3029	0.01	95.64	νCH _{metil} , asym, 80 + νCH, 17
28	3045	3045	3151	3029	3029	9.61	0.01	vCH _{metil} , asvm, 80 + vCH, 17
29	3018	3029	3137	3016	3016	23.02	0.01	vCH_{matil} asym. 78 + vCH 13
30	3018	3029	3137	3016	3016	0.01	191 34	$vCH \rightarrow asym 78 + vCH 13$
21	2010	2020	2126	2015	2015	0.01	175.42	vCII _{metil} , asym, 70 + vCII, 15
51	5016	3020	5150	5015	3015	0.01	1/5.45	VCR _{metil} , asylli, 50 + VCR, 25
32	3018	3020	3136	3015	3015	7.24	0.11	VCH, 45 + VCH _{metil} , asym, 34
33	3018	3020	3134	3013	3013	8.02	1.70	νCH _{metil} , sym, 73 + νCH, 18
34	3018	3020	3134	3013	3013	0.04	308.73	ν CH _{metil} , sym, 72 + ν CH, 18
35	2980	2982	3067	2949	2949	0.01	213.32	vCH _{metil} , sym, 76
36	2980	2982	3067	2949	2949	13.4	0.17	vCH _{metil} sym 76
37	2927	2929	3062	2944	2944	19.44	0.01	VCH is sym 71
20	2027	2020	2002	2011	2044	0.01	212.00	verimenti, synn, 71
20	2927	2929	3062	2944	2944	0.01	213.99	VCR _{metil} , Sylli, 71
39	1690	1691	1789	1720	1720	0.01	72.49	VC0, /1
40	1690	1691	1789	1720	1720	457.77	0.01	vC0, 73
41	1662	1666	1723	1656	1656	855.44	0.01	vC0, 74
42	1651	1651	1712	1646	1646	0.01	119.58	vC0, 73
43	1597	1608	1663	1599	1599	33.23	0.01	VCCarom, 86
44	1597	1608	1662	1598	1598	0.01	635 52	VCCaram 96
15	1502	1504	1657	1500	1500	0.01	122.25	VCC = 72 + SCNU = 12
40	1575	1574	1057	1575	1575	240.02	132.23	$VCC_{arom}, 72 + OCIVII, 12$
46	1593	1594	1656	1592	1593	340.93	0.01	VCLarom, 76 + OCINH, 14
47	1589	1584	1651	1587	1587	77.99	0.01	VCC_{arom} , 56 + δCNH , 25
48	1589	1584	1649	1586	1586	0.01	177.08	νCC _{arom} , 81 + δCNH, 10
49	1576	1582	1637	1573	1573	62.71	0.01	νCC _{arom} , 75 + δCNH, 11
50	1576	1582	1636	1573	1573	0.01	161.34	vCC_{arom} , 78 + δ CNH, 10
51	1524	1531	1585	1524	1524	474 82	0.01	$\delta CNH 48 + \nu CC_{arom} 21$
52	1524	1521	1584	1523	1523	0.01	80.12	$\delta CNH 47 \pm yCC = 20$
52	1524	1531	1504	1525	1525	0.01 F01 1	00.12	$V_{\rm exp} = 41 + S_{\rm exp} = 21 + 100$
53	1518	1520	15/4	1513	1513	591.1	0.01	VINCCarb, 41 + OCINH, 31 + VCCarom, 17
54	1518	1520	1569	1508	1508	0.01	140.82	ν NC _{Carb} , 42 + δ CNH, 30 + ν CC _{arom} , 14
55	1506	1489	1550	1490	1491	0.01	68.76	δCNH, 58 + δNCH, 26 + νCC _{arom} , 11
56	1506	1489	1550	1490	1490	786.90	0.01	δCNH, 57 + δNCH, 18 + νCC _{arom} , 11
57	1460	1463	1530	1471	1471	11.11	0.01	δCH _{arom} , ipb, 81 + δCNH, 11
58	1460	1463	1530	1471	1471	0.01	122.68	δCH_{arom} , ipb. 80 + δCNH , 11
59	1455	1450	1508	1450	1450	5.40	0.01	$\delta CH = scis 59 + \delta CH$ inh 14
60	1455	1450	1500	1440	1450	0.01	26 70	SUCU size 62 SCU sinh 16
60	1455	1450	1506	1449	1450	0.01	20.79	On Chmetil, SCIS, 65 + OCharom, IPD, 16
61	1447	1444	1504	1446	1446	73.93	0.01	δCH _{arom} , ipb, 69 + δHCH _{metil} , scis, 11
62	1447	1444	1504	1446	1446	0.01	46.25	δCH _{arom} , ipb, 68 + δHCH _{metil} , scis, 10
63	1440	1437	1500	1442	1442	0.01	13.56	δHCH _{metil} , scis, 48 + δCH _{arom} , ipb, 32 + δCNH, 12
64	1440	1437	1500	1442	1442	278.73	0.01	δHCH _{metil} , scis, 44 + δCH _{arom} , ipb, 35 + δCNH. 18
65	1440	1437	1499	1441	1441	62.26	0.01	δCH_{metil} , scis, 52 + δCH_{arom} , inb. 21
66	1440	1437	1499	1441	1441	0.01	19.77	δCH_{max} scis 56 + δCH inh 20
67	1/24	1/21	1407	1440	1440	26.64	0.01	SCU sois EQ SCU sub 14
0/	1430	1431	149/	1440	1440	30.04	0.01	$OCI1_{metil}$, SCIS, 59 + OCH_{arom} , IPD, 14
68	1436	1431	1496	1438	1438	0.01	38.79	ocHmetil, scis, 48 + oCHarom, ipb, 18
69	1433	1431	1494	1436	1436	0.01	25.47	δCH _{metil} , scis, 54
70	1433	1431	1494	1436	1436	37.44	0.01	δCH _{metil} , scis, 46
71	1423	1425	1480	1423	1423	0.01	113.16	δCH_{arom} , ipb, 42 + δNH . 22
72	1423	1425	1479	1422	1422	185.52	0.01	δCH_{arom} inh 43 + δNH 22
72	1274	1270	1425	1270	1271	0.01	0.01	$SCH = 1000 \text{ mm} \text{ mm} \text{ mm} \text{ mm} \text{ m} \text$
13	1374	13/7	1425	1370	1371	0.01	0.34	SCIL survey 70
/4	13/4	13/9	1425	13/0	13/0	24./3	0.01	och _{metil} , umbr, 79
75	1363	1362	1423	1368	1368	4.40	0.01	δCH _{metil} , umbr, 91
76	1363	1362	1423	1368	1368	0.01	6.11	δCH _{metil} , umbr, 90
77	1331	1336	1392	1339	1339	0.01	81.98	νCC_{metil} , 27 + νCC_{Carb} , 18 + δCH_{metil} , wagg, 17 + δCH , 11
78	1331	1336	1392	1339	1339	29.00	0.01	ν CC _{metil} , 26 + ν CC _{Carb} , 17 + δ CH _{metil} , wagg, 17 + δ CH, 13

Table 2. Continued.

No	Exp. IR	RAMAN	B3LYP					Assignments,
	(cm-1)	(cm-1)	Unscaled	Scaled	Scaled	IR Int.	RAMAN activity	PED (%)
	. ,	. ,	(cm·1)	(cm-1)	(cm·1)	(km/mol)	(A4/amu)	
70	1221	1011	12(0	1200	1200	121.42	0.01	
/9	1321	1311	1360	1308	1308	121.43	0.01	VCCarom, 66 + OCHarom, IPD, 15
80	1321	1311	1360	1307	1307	0.01	110.82	νCC _{arom} , 65 + δCH _{arom} , ipb, 17
81	1289	1289	1351	1299	1299	51.96	0.01	νCC _{arom} , 44 + νCN 24 + δCH, 10
82	1289	1289	1351	1299	1299	0.01	139.64	ν CCarom, 45 + ν CN 24 + δ CH, 11
83	1280	1280	1336	1285	1285	21.25	0.01	δCH in 70
0.3	1207	1207	1000	1203	1205	21.33	26.00	SCII inh 70
84	1289	1289	1336	1284	1285	0.01	26.98	oCH _{arom} , Ipb, 76
85	1271	1271	1331	1279	1280	137.60	0.01	δCH _{arom} , ipb, 64 + δCH, 12
86	1271	1271	1331	1279	1279	0.01	49.19	δCH_{arom} , ipb, 60 + δCH , 14
87	1265	1266	1329	1278	1278	65 77	0.01	$\delta C H_{array}$ inh 41 + $\delta C H$ 34
00	1205	1200	1327	1270	1270	0.01	0.01	SCIL inh 42 · SCIL 27
00	1205	1200	1526	1277	12//	0.01	27.00	OCHarom, IPD, 42 + OCH, 57
89	1255	1258	1303	1253	1253	107.04	0.01	δCH_{arom} , ipb, 24 + vCN, 23 + δNH , 15 + vCC _{arom} , 12
90	1255	1258	1303	1253	1253	0.01	162.52	δCH _{arom} , ipb, 25 + νCN 24 + δNH, 15 + νCC _{arom} , 14
91	1246	1246	1299	1249	1249	0.01	447.27	νNC_{arom} , 52 + δNH , 18 + δCH_{arom} , ind. 11
92	1246	1246	1299	1248	1249	117 56	0.01	$vNC = 53 + \delta NH + 16 + \delta CH inh + 11$
02	1230	1270	1201	1240	1247	117.50	0.01	Succi ac
93	1238	1238	1281	1232	1232	46.98	0.01	OHUUI, 76
94	1238	1238	1281	1232	1232	0.01	16.11	δHCCI, 76
95	1215	1220	1276	1227	1227	0.01	11.91	δ HCCl, 61 + δ CH _{metil} , 12
96	1215	1220	1275	1226	1226	79.13	0.01	δ HCCl. 62 + δ CH _{metil} . 12
07	1200	1200	1262	1214	1214	25 51	0.01	VNC_{a} , $61 + SNU + 16 + SCU = inh + 12$
57	1208	1200	1202	1214	1214	33.31	0.01	VNCCarb, 01 + 0NII, 10 + 0CHarom, 1pb, 12
98	1208	1208	1261	1212	1213	0.01	26.43	vNC _{Carb} , 64 + δ CH _{arom} , 1pb, 15 + δ NH, 15
99	1189	1191	1234	1186	1186	0.01	42.18	δCH _{arom} , ipb, 76 + δNH, 14
100	1189	1191	1234	1186	1186	73.74	0.01	δCH_{arom} , ipb, 82 + δNH , 11
101	1180	1177	1225	1177	1177	1.81	0.01	$\delta C H_{max}$ in $72 \pm v C C_{max}$ 11
101	1100	1177	1223	1177	1177	0.01	0.01	SCII in $(0, 1)$
102	1160	11//	1224	11//	11//	0.01	0.95	OCHarom, IPD, 69 + VCCarom, 14
103	1162	1161	1208	1162	1162	0.01	22.08	δCH _{arom} , ipb, 62 + δNH, 15 + δCH, 12
104	1162	1161	1208	1162	1162	135.30	0.01	δCH _{arom} , ipb, 59 + δNH, 10 + δCH, 10
105	1157	1158	1193	1147	1147	0.01	57.68	δCHarom, iph. 64
106	1157	1159	1103	1147	1147	2.38	0.01	δCH in 67
100	11.10	1130	1175	1147	1147	2.30	0.01	SCIL : L CF
107	1148	1148	1191	1145	1145	4.09	0.01	oCHarom, 1pb, 65
108	1148	1148	1191	1145	1145	0.01	57.25	δCH _{arom} , ipb, 66
109	1108	1109	1138	1094	1094	21.87	0.01	δCH_{arom} , ipb. 46 + δCH_{metil} , 13 + vCC, 11
110	1108	1109	1137	1094	1094	0.01	6.78	$\delta C H_{max}$ inb 48 + yCC 13 + $\delta C H_{max}$ 12
111	1002	1001	1107	1000	1000	0.01	0.70	SCIL inh (C + vCC - 21
111	1092	1091	1152	1066	1000	0.00	0.01	OCHarom, IDD, 66 + VCCarom, 21
112	1092	1091	1132	1088	1088	0.01	4.19	δCH_{arom} , 1pb, 66 + νCC_{arom} , 22
113	1073	1074	1114	1071	1071	0.01	9.09	δCH _{arom} , ipb, 34 + νCC _{arom} , 25 + νCC, 14
114	1073	1074	1113	1070	1070	7.41	0.01	δCH_{arom} , ipb. 35 + νCC_{arom} , 26 + νCC_{c} , 12
115	1051	1051	1007	1054	1054	14.54	0.01	$\delta CH \rightarrow w_{2} \sigma \sigma A7 + \delta CH 12$
110	1051	1051	1007	1054	1054	0.01	14.02	SCIL WASS, 47 + OCH, 12
110	1051	1051	1097	1054	1054	0.01	14.82	oCH _{metil} , Wagg, 45 + oCH, 13
117	1051	1051	1095	1053	1053	9.82	0.01	δCH _{metil} , wagg, 57 + δCH, 14
118	1051	1051	1095	1053	1053	0.01	9.73	δCH_{metil} , wagg, 53 + δCH , 18
119	1051	1051	1092	1050	1050	0.01	2.14	δCH_{metril} wagg 59 + δCH 23
120	1051	1051	1002	1050	1050	20.02	0.01	$SCU \rightarrow Wagg EQ + SCU 21$
120	1031	1031	1092	1030	1030	39.92	0.01	OCIImetii, wagg, 50 + OCII, 21
121	1040	1039	1080	1039	1039	0.01	112.10	VCCarom, ring breating, 66 + 8CHarom, 1pb, 24
122	1040	1039	1080	1039	1039	21.54	0.01	νCC _{arom} , ring breating, 65 + δCH _{arom} , ipb, 23
123	1037	1039	1074	1032	1032	0.01	28.78	vCC_{arom} , ring breating, 57 + δCH_{arom} , ipb, 18
124	1037	1039	1074	1032	1032	7 81	0.01	vCC_{rec} ring breating 56 + δCH_{rec} in 19
125	005	006	1006	067	067	26.02	0.01	SCU E6 1 SCU
125	995	990	1006	967	967	20.92	0.01	$OCH, 50 + OCH_{metil}, Wagg, 25$
126	995	996	1006	967	967	0.01	4.63	δCH , 54 + δCH_{metil} , wagg, 25
127	968	968	995	956	957	28.97	0.01	νCC, 27 + δCH _{metil} , wagg, 19 + δCH, 18
128	968	968	994	956	956	0.01	7.66	vCC , 28 + δCH_{metil} , wagg, 19 + δCH , 16
120	950	051	086	949	949	0.01	1 4 2	δCH oph 60
120	050	051	000	040	040	1.01	0.01	SCII and FO
150	950	951	960	946	946	1.51	0.01	och _{arom} , opb, 59
131	942	943	978	940	940	0.01	0.41	δCH _{arom} , opb, 65
132	942	943	978	940	940	2.58	0.01	δCH _{arom} , opb, 65
133	925	929	965	928	928	2.47	0.01	δCHarom, opb. 42
134	925	929	964	927	927	0.01	2.62	δCH_{max} onb 41
105	010	017	050	015	015	4 40	0.01	SCIL onb 67
135	910	91/	952	212	915	4.40	0.01	oullarom, opu, o/
136	918	917	951	915	915	0.01	1.54	ბსHarom, opb, 69
137	900	899	943	906	906	0.01	16.43	δCH _{arom} , opb, 54 + νCC, 15 + δNCO, 12
138	900	899	941	904	905	1948	0.01	δCH_{arom} onb 52 + vCC 16 + δNCO 13
120	004	000	022	007	907	1516	0.01	$\delta NCO 22 + \delta CH$ orb 22 + δCH is twist 12
135	094	099	733	097	097	13.10	0.01	SCU = 1 22 + SUCO 20 + SCU = 1 12
140	894	899	933	897	897	0.01	6.25	oCH _{arom} , opb, 22 + oNCO, 20 + oCH _{metil} , twist, 12
141	869	870	904	869	869	33.31	0.01	δCCC _{ring} , 81
142	869	870	903	868	868	0.01	7.71	δCCC _{ring} , 80
143	851	853	885	851	851	1.83	0.01	$\delta C H_{arrow}$ onb 50 + $\tau C C$ 14
144	Q51	952	005	Q51	QE1	0.01	8 00	δCH onb $52 \pm \tau CC$ 12
144	031	000	000	031	051	0.01	0.77	0011arom, 0p0, 32 + 100, 13
145	829	829	868	835	835	2.49	0.01	δLHarom, opb, 49 + τCC, 10
146	829	829	868	835	835	0.01	5.69	δCH _{arom} , opb, 54
147	829	829	863	830	830	1.64	0.01	δCCCring, 71
140	820	820	863	830	830	0.01	63.87	8000 - 72
140	027	047	003	030	030	0.01	14.00	
149	815	817	841	808	808	0.01	14.83	ουυ ου ου ου ου ου ου ου ου ου ου ου ου
150	815	817	840	807	807	3.75	0.01	δCCC _{ring} , 68 + νCN, 22
151	802	795	832	800	800	6.42	0.01	νCC_{arom} , 52 + δCCC_{ring} , 24 + δCNC . 21
152	802	795	832	800	800	0.01	30.57	$v(C_{2}, 54 + \delta CNC) 24 + \delta CCC 23$
152	770	771	704	762	764	0.01	21 50	v_{NII} 20 v_{NII} 20 v_{NII} 27
153	//9	//1	/94	/03	/04	0.01	51.58	γινη, 50 + γC-Carb, 27
154	779	771	794	763	763	34.18	0.01	γNH, 30 + γC-C _{Carb} , 31
155	741	747	774	744	744	0.01	8.50	δCH _{arom} , opb, 32 + τCC _{ring} , 31 + τCC, 31
156	741	747	773	743	743	33,28	0.01	δCH_{arom} , opb. 31 + τCC_{ring} , 30 + τCC_{27}
157	741	747	767	738	720	176.26	0.01	$\tau C = 27 \pm \tau C = 27 \pm \delta C H$ on 27
137	/ 71	/ 1/	/0/	/ 50	/ 50	110.00	0.01	Cornig, 27 + 100, 27 + 0011arom, 0p0, 22

Polat et al. / European Journal of Chemistry 10 (4) (2019) 386-402

Table 2. Continued	
--------------------	--

No	Erro ID	DAMAN	DOLVD					Assignments
NO	Exp. IK	KAMAN	BSLIP	C1 - 1	Carlad	ID L.	DAMAN	Assignments,
	(cm ¹)	(cm ⁻)	Unscaled	Scaled	Scaled	IK INL.	RAMAN activity	PED (%)
450	= + +	5.15	(cm-1)	(cm ⁻⁺)	(cm ⁻¹)		(A*/amu)	
158	741	747	766	737	737	0.01	3.42	τ CL _{ring} , 35 + τ CL, 25 + δ CH _{arom} , opb, 23
159	726	724	/53	724	724	0.01	7.40	γL_{Carb} , 33 + $\delta L H_{metil}$, Wagg, 13 + $\delta L H_{arom}$, Opb, 12
160	719	/18	749	720	720	10.10	0.01	γL_{Carb} , 38 + $\delta L H_{arom}$, Opb, 13 + $\delta L H_{metil}$, Wagg, 10
161	719	/18	744	/15	/15	48.25	0.01	γ NH, 42 + γ C-C _{carb} , 20 + δ CH _{arom} , Opb, 11
162	719	718	742	713	713	0.01	8.03	γ NH, 41 + γ C-C _{carb} , 21 + δ CH _{arom} , opb, 14
163	701	705	730	702	702	8.87	0.01	γCring, 76
164	701	705	730	701	701	0.01	9.23	γC _{ring} , 74
165	697	699	728	700	700	7.69	0.01	γC , 68 + γC_{ring} , 12
166	697	699	727	699	699	0.01	4.05	γCring, 74
167	691	689	713	685	685	56.42	0.01	vCCl, $61 + \delta CH_{metil}$, wagg, 10
168	691	689	712	684	684	0.01	14.12	vCCl, $62 + \delta CH_{metil}$, wagg, 10
169	678	671	705	678	678	0.01	10.36	vCCl, 60 + δ CH _{metil} , wagg, 15
170	678	671	704	677	677	43.90	0.01	νCCl, 64 + δCH _{metil} , wagg, 18
171	649	653	677	651	651	0.01	39.03	γCN, 44
172	649	653	676	650	650	43.40	0.01	γCN, 45
173	638	638	663	637	637	4.33	0.01	δCCC _{ring} , 28 + γC, 21 + δCH _{metil} , wagg, 11
174	638	638	662	636	636	0.01	4.61	δCCC_{ring} , 27 + γC , 20 + δCH_{metil} , wagg, 13
175	614	614	642	618	618	0.01	24.24	δCCC _{ring} , 75 + δNH, opb, 13
176	614	614	642	617	617	15.66	0.01	δCCC _{ring} , 74 + δNH, opb, 14
177	581	592	608	584	584	8.34	0.01	$\delta \text{CCC}_{\text{ring}}$, 44 + δCCN , 20
178	581	592	607	584	584	0.01	16.30	$\delta \text{CCC}_{\text{ring}}$, 43 + δCCN , 20
179	570	582	600	577	577	0.01	24.29	δCCC _{ring} , 53 + δNH, opb, 12
180	570	582	600	576	576	8.48	0.01	δCCC _{ring} , 51 + δNH, opb, 11
181	567	567	577	554	555	79.83	0.01	δCCC_{ring} , 34 + νCCl , 30 + τCC_{ring} , 17
182	567	567	576	553	553	0.01	17.20	δCCC_{ring} , 34 + νCCl , 30 + τCC_{ring} , 17
183	537	540	555	533	533	0.01	2.56	τCC _{ring} , 87
184	537	540	555	533	533	6.45	0.01	τCC _{ring} , 87
185	533	540	552	530	530	12.50	0.01	γC _{ring} , 85
186	533	540	551	530	530	0.01	8.69	vCring, 84
187	-	484	508	488	488	0.01	3.98	δCCC_{ring} , 61+ γC , 21 + δCH_{metil} , twist, 13
188	-	484	508	488	488	19.32	0.01	δCCC_{ring} , 60 + γC , 22 + δCH_{metil} , twist, 15
189	-	464	475	456	456	0.01	3.13	τCC _{ring} , 63
190	-	464	474	456	456	8.02	0.01	τCCring, 64
191	-	464	473	455	455	28.29	0.01	TCCring, 62
192	-	464	473	454	454	0.01	11.91	TCCring 82
193	-	442	468	450	450	42.20	0.01	TCCring, 71
194	_	442	466	448	448	0.01	0.65	$vC_{ring} 53 + \delta CCN 20$
195	-	425	434	417	417	18.37	0.01	$\delta CCN 41 + \tau CC_{ring} 14$
196	_	425	432	416	416	0.01	7 70	$\delta C(N 45 + \tau C)$ is a 15
197	-	401	417	401	401	131.59	0.01	vNH 81 + τ CCring 11
198	-	401	416	400	400	0.01	20.39	vNH 73 + τ CCring 12
199	-	391	408	392	392	49.26	0.01	vNH 33 + vCC 29
200	_	391	403	388	388	0.01	15 90	vNH 33 + vCC1 12
201	_	372	386	372	372	117.05	0.01	$\gamma NH 28 + 8000 21$
201	_	372	381	367	367	0.01	14.95	VNH 75 + 8CCC 13
202	_	320	332	307	307	0.01	2 0 2	$80001 44 \pm 700 = 30$
203	-	220	224	221	221	0.01	0.01	$SCCC1 44 + \pi CC = 22$
204		320	337	319	319	0.01	2.07	$\delta C C C 23 + \tau C C 21$
205		320	332	319	319	6.66	0.01	SCNH $30 \pm \pm \tau CC$ 18
200		314	215	303	303	0.00	10.65	$\tau C C = 80$
207		214	313	300	303	5 72	0.01	$\tau CC = 54 \pm 8CCC \ 10$
200	-	200	200	206	206	5.72	0.01	$\pi^{-1}C_{-1} = 62 + 8CCC_{-1}C_{-1}$
205	-	200	206	204	204	0.01	4.22	$\pi^{-1}C_{-1} = 51 + 8C_{-1}C$
210	-	200	202	202	202	0.01	6.70	πCC , $A0 + 8CCC + 22 + 8CH$ is rock 15
211 212	-	298	303	290	290	12 04	0.01	SCCN $30 \pm \tau$ C $_{int}$ 31 ± 8 C $_{int}$ 14
212 212	-	260	271	263	262	3.00	0.01	$\tau = 100000000000000000000000000000000000$
210	-	260	273	263	263	0.01	0.85	800, 20 + 70000, 20 + 80000, 21
214 215	-	200	273	203	203	1816	0.05	$\tau C = 56 \pm \delta C H \rightarrow rock 35$
215	-	251	262	253	253	0.10	2 5 2	$\tau C = 68 \pm \delta C H_{meth}$ rock 21
210	-	230	203	233 227	233	6.01	2.32	$\tau CC_5 S \pm \delta CH_{metal}$, IUCK, S1
217	-	230	247	237	237	0.71	0.01	$100, 50 + 00 \Pi_{metil}, 100K, 27$
218	-	238	245	235	236	0.01	2.35	TUC, $28 + 0$ CH _{metil} , FOCK, 20
219	-	227	235	226	226	0.01	2.14	$TUL, 60 + TUH_{metil}, 21$
220	-	227	235	226	226	7.18	0.01	τ CL, 65 + τ CH _{metil} , 24
221	-	220	227	218	218	20.89	0.01	τCH_{metil} , 24 + τCC , 21 + τCN , 12
222	-	216	225	216	216	0.01	6.57	τCH_{metil} , 21 + τCC , 21 + τCN , 11
223	-	186	199	192	192	/.89	0.01	$\tau_{\rm UC}$, 29 + $\tau_{\rm CH_{metil}}$, 14 + $\tau_{\rm NH}$, 13
224	-	186	198	190	190	0.01	5.24	τυς, $22 + τCH_{metil}$, $15 + τNH$, 12
225	-	179	182	175	175	0.01	1.68	τCC, 31 + τCN, 21
226	-	169	177	170	170	10.46	0.01	δCCN, 23 + τCC, 21 + τCN, 14
227	-	162	170	164	164	10.15	0.01	τCC, 22 + τCC _{ring} , 20 + δCCO, 16
228	-	162	170	164	164	0.01	4.09	τCC _{ring} , 26 + τCC, 20 + δCCO 19
229	-	155	165	158	158	7.58	0.01	τCC _{ring} , 52 + τCN, 21
230	-	155	163	157	157	0.01	2.66	τCC _{ring} , 51 + τCN, 31
231	-	131	130	125	125	0.01	6.99	τCC _{ring} , 31 + τCC, 30 + δCNC, 10
232	-	-	129	124	124	1.95	0.01	τCC _{ring} , 31 + τCC, 29 + δCNC, 20
233	-	-	107	103	103	0.01	17.58	τNC _{ring} , 23 + ν0Η, 18 + τCC _{ring} , 17
234	-	-	107	103	103	9.78	0.01	τNC_{ring} , 28 + τCC_{ring} , 20
235	-	-	98	94	94	0.01	4.99	τΝΗΟC, 21 + δCCN, 20
236	-	-	94	90	90	9.55	0.01	τNC_{ring} , 38 + τCC , 29

Table 2. Continued.

No	Exp. IR	RAMAN	B3LYP					_Assignments,
(cm ⁻¹)		(cm-1)	Unscaled	Scaled	Scaled	IR Int.	RAMAN activity	PED (%)
			(cm-1)	(cm ⁻¹)	(cm-1)	(km/mol)	(A4/amu)	
237	-	-	81	78	78	3.08	0.01	δCOH, 34 + τNC _{ring} , 22 + τCC _{ring} , 12
238	-	-	79	76	76	0.01	7.22	τNC _{ring} , 38 + τCC, 29
239	-	-	72	69	69	0.01	7.34	τNC _{ring} , 27 + τCN, 21 + τCC, 18
240	-	-	70	67	67	6.83	0.01	δCCN, 32 + τNC _{ring} , 25 + τCC _{ring} , 13
241	-	-	58	56	56	0.01	2.38	τNC_{ring} , 25 + τCC , 15 + τCC_{ring} , 13
242	-	-	54	52	52	2.41	0.01	τCN , 34 + τCC_{ring} , 27 + τNC_{ring} , 26
243	-	-	49	47	47	2.94	0.01	τNC _{ring} , 23 + τCC, 21 + τCN, 10
244	-	-	48	46	46	0.01	4.36	τCN, 26 + τCC _{ring} , 22
245	-	-	42	41	41	1.19	0.01	τCC, 35 + τCN, 28
246	-	-	42	41	41	0.01	2.71	τCC, 36 + τCN, 21
247	-	-	40	39	39	0.01	0.55	τCC, 43
248	-	-	38	37	37	4.34	0.01	τCN, 31 + τCC, 22
249	-	-	37	36	36	0.01	7.48	τCC, 30 + τCN, 11
250	-	-	36	34	34	2.51	0.01	τCC, 40
251	-	-	32	31	31	0.01	2.52	τCC, 21 + τCN, 10
252	-	-	31	30	30	0.89	0.01	τCC, 38
253	-	-	29	28	28	0.01	3.29	τCC, 20 + τCN, 12 + τCO, 10
254	-	-	27	26	26	0.01	4.00	τCC, 26 + τCN, 19
255	-	-	25	24	24	0.38	0.01	τCC _{ring} , 63 + τCC, 16
256	-	-	16	16	16	0.98	0.01	τСС, 19 + δСОН, 15 + τСОНΝ, 10
257	-	-	14	13	13	0.01	2.49	τCC , 25 + τNC_{ring} , 10
258	-	-	10	10	10	0.23	0.01	τCN, 16 + τCC, 13
r			0.9999	0.9999	0.9999			
Mean	absolute p	ercentage error	3.9085	0.4836	0.4828			
Mean	absolute e	error	59.4301	6.7498	6.7434			
RMS			59.4835	8.9128	8.9123			
Scalii	ng factor		1.0000	0.9614	0.9615			
*	motching, S	in plana handing	www.out.of.ml	ana handin	a. a. toraion.	inh, in plane	handing onh out	of plane handing, agis, saissering, wags, wagging, twist

* ν, stretching; δ, in-plane bending; γ, out-of-plane bending; τ, torsion; ipb: in-plane bending; opb: out-of-plane bending; scis: scissoring; wagg: wagging; twist: twisting; rock: rocking; umbr: umbrella; sym, symmetric; asym, asymmetric; arom: aromatic; carb: carbonyl group; br: Between ring; SF: Scaling factor; CSF: Calculated scaling factor; PED less than 10% are not shown.

Table 3. Statistical comparison o	f theoretical and	l experimental vibrat	ional wavenumbers of	L ^{NNN} molecule on th	e used method and b	asis set *.
Method	B3LYP	B3LYP×SF	B3LYP×CSF	B3LYP	B3LYP×SF	B3LYP×CSF
Basis set	6-31G(d,p)			6-311G(d,p)		
r	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
Mean absolute percentage error	3.9085	0.4836	0.4828	3.6402	0.7304	0.7250
Mean absolute error	59.4301	6.7498	6.7434	51.8010	8.1959	8.1867
RMS	59.4835	8.9128	8.9123	50.1132	9.0561	9.0357
Scaling factor	1.0000	0.9614	0.9615	1.0000	0.9679	0.9675
Method	B3PW91	B3PW91×SF	B3PW91×CSF	B3PW91	B3PW91×SF	B3PW91×CSF
Basis set	6-31G(d,p)			6-311G(d,p)		
r	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
Mean absolute percentage error	4.3650	0.7509	0.7303	3.9508	0.7579	0.7670
Mean absolute error	63.9214	9.1326	8.7367	56.3114	8.8874	8.8026
RMS	62.6507	10.4008	9.8223	54.5543	10.1032	9.7999
Scaling factor	1.0000	0.9573	0.9595	1.0000	0.9631	0.9647
Method	B-LYP	B-LYP×SF	B-LYP×CSF	B-LYP	B-LYP×SF	B-LYP×CSF
Basis set	6-31G(d,p)			6-311G(d,p)		
r	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
Mean absolute percentage error	0.8773	0.7574	0.7832	0.7355	0.8774	0.7446
Mean absolute error	13.7557	10.9979	10.7545	10.5338	11.2224	9.9809
RMS	16.7634	12.6458	12.1863	12.3226	12.6502	11.4966
Scaling factor	1.0000	0.9945	0.9922	1.0000	0.9934	0.9970
Method	mPW1PW	mPW1PW×SF	mPW1PW×CSF	mPW1PW	mPW1PW×SF	mPW1PW×CSF
Basis set	6-31G(d,p)			6-311G(d,p)		
r	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
Mean absolute percentage error	4.9951	0.6182	0.5865	4.7233	0.8551	0.8722
Mean absolute error	74.9157	8.9412	8.4917	67.0145	9.9435	9.7613
RMS	74.0626	11.2626	10.6256	64.3573	11.1262	10.7601
Scaling factor	1.0000	0.9500	0.9524	1.0000	0.9567	0.9585
Method	HF	HF×SF	HF×CSF	HF	HF×SF	HF×CSF
Basis set	6-31G(d,p)			6-311G(d,p)		
r	0.9994	0.9994	0.9994	0.9993	0.9993	0.9993
Mean absolute percentage error	11.9216	1.8079	1.9171	11.2904	1.9162	2.0199
Mean absolute error	170.3659	27.0687	27.5107	160.3598	28.0124	28.4236
RMS	161.4518	29.2392	28.8031	151.8008	29.7798	29.4472
Scaling factor	1.0000	0.8992	0.9023	1.0000	0.9051	0.9078
* CE. Cooling footon, CCE. Coloulate	d agaling factor	in this research				

* SF: Scaling factor, CSF: Calculated scaling factor in this research.

3.3. Thermodynamic parameters and molecular properties

The thermodynamic parameters namely energy, zeropoint vibrational energy, rotational constants and entropy of the compounds have also been computed at the HF and DFT level using 6-31G(d,p) 6-311G(d,p) basis sets at 298.15 K in ground state. The results of the statistical thermos-chemical analysis of title compound are presented in Table 4. The thermodynamic data provides helpful information for further studies of the title compound. The standard thermodynamic functions can be used as reference thermodynamic values to calculate the changes of entropies and the changes of enthalpies of the reaction.

Thermodynamic parameters	B3LYP		B3PW91		BLYP		mPw1Pw9	91	HF	
(298 K)	6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311
SCF energy	-3865.093	-3865.668	-3864.117	-3864.652	-3864.220	-3864.839	-3864.660	-3865.193	-3849.643	-3850.131
(a.u.)										
Total energy (Thermal)	468.778	466.929	470.147	468.100	455.715	453.766	472.870	470.936	498.299	495.644
Etotal (kcal/mol)										
Entropy, S	303.739	299.180	298.494	299.637	304.474	308.323	302.180	298.549	297.962	300.663
(cal/mol.K)										
Vibrational_enegry,	467.000	465.151	468.370	466.323	453.938	451.988	471.093	469.159	496.521	493.867
Evib (kcal/mol)										
Zero-point vib. energy,	437.1447	435.5989	438.9418	436.8083	423.5659	421.4053	441.5041	439.8499	468.2872	465.5137
E _o (kcal/mol)										
Rotational constant (GHz)										
A	0.07223	0.07642	0.07725	0.07756	0.07512	0.07356	0.07340	0.07858	0.07187	0.07192
В	0.03983	0.03437	0.03435	0.03448	0.03362	0.03381	0.04031	0.03475	0.03945	0.03916
C	0.03251	0.03081	0.03083	0.03096	0.03007	0.03006	0.03291	0.03128	0.03284	0.03279
Dipole moment (Debye)										
μ_x	0.0000	-0.0003	0.0003	0.0001	0.0002	0.0000	0.0000	-0.0005	0.0000	-0.0006
μ _y	-0.0001	-0.0002	-0.0003	0.0000	0.0000	-0.0003	0.0000	-0.0003	0.0001	-0.0004
μz	-0.0001	0.0005	0.0001	0.0001	-0.0002	-0.0001	0.0000	0.0000	0.0002	0.0003
μ _{Total}	0.0001	0.0006	0.0004	0.0002	0.0002	0.0003	0.0000	0.0006	0.0002	0.0008
Entropy (cal/mol.K)										
Total	303.739	299.180	298.494	299.637	304.474	308.323	302.180	298.549	297.962	300.663
Translational	45.756	45.756	45.756	45.756	45.756	45.756	45.756	45.756	45.756	45.756
Rotational	39.372	39.515	39.505	39.492	39.578	39.594	39.332	39.461	39.376	39.384
Vibrational	218.611	213.908	213.233	214.389	219.139	222.973	217.092	213.332	212.829	215.523

 Table 4. The calculated thermodynamic parameters of L^{NNN} molecule.

* 6-31: 6-31G(d,p); 6-311: 6-311G(d,p).

Atomic charges play an important role in quantum chemistry. The atomic natural charges have been calculated by natural bond orbital (NBO) method [57,58] for the title compound and the results are shown in Table 5. The charge distribution of the title molecule has an important influence on the vibrational spectra. The charges at the site of the C21 atom attached to the O22 atom are more positive than other carbon atoms due to the presence of the electron withdrawing nature of the other carbonyl groups. Mulliken atomic charge [59] populations give one of the simplest pictures of charge distribution and the Mulliken charges predict net atomic charges in the molecule (Table 6). Comparing the NBO and the Mulliken charges for the title compound, we can easily say that there is a general agreement for all atoms.

3.4. Hirshfeld surface analysis

In this study, the Hirshfeld surface analyses revealing the nature of intermolecular interactions of the L^{NNN} compound and the two-dimensional (2D) fingerprint plots associated with these surfaces were calculated using the Crystal Explorer17 program [50]. The X-ray single crystal analysis revealed two independent molecules in the asymmetric unit of L^{NNN} (Mol A and Mol B). For this reason, Hirshfeld surface analyzes were performed for both molecules in the asymmetric unit and thus the structure similarities and differences between the independent molecules in the asymmetric unit were shown. Hirshfeld surfaces visualize intermolecular contacts by red-blue-white color-coding for short or long contacts and investigates the properties of all contacts within the crystal lattice.

Hirshfeld surfaces of the molecules A and B mapped with different properties, i.e. d_{norm} , curvedness and shape index and were shown to be transparent to allow visualization of the molecular component in a similar orientation for all of the structures, around which they were calculated (Figure 4). d_{norm} surfaces were used to determine the normalized contact distance of the atoms, defined in terms of the d_i , d_e and van der Waals (vdW) radii. The d_{norm} value is positive or negative when intermolecular interactions are longer or shorter than vdW radii, respectively. The d_{norm} values are mapped on the Hirshfeld surface by using white-blue-red color scales. The white regions seen on the surface are equal to the sum of vdW

radii, while the red and blue regions represent interactions at shorter and longer distances than vdW radii, respectively [60].

The shape index and curvedness surfaces are used to determine the characteristic packaging modes, planar stacking arrangements, and the manner in which neighboring molecules contact each other [61]. On the other hand, two-dimensional fingerprint maps were used to quantitatively determine intermolecular interactions in the compound.

When the d_{norm} surfaces of molecules A and B are examined, a total of three red spots appear, which result from the interactions between A and B molecules in the asymmetric unit (Figure 4). The two large red spots on the surfaces are due to strong N–H···O hydrogen bonds between the A and B molecules, while the smaller red spot is caused by the weaker C-H···O interaction (Figure 5). These interactions continue between the ABABABAB molecules along the crystal lattice, causing the molecules to expand along the crystallographic axis (Figure 6).

On the d_{norm} surface of the Mol A, two light red spots are also seen due to C-H···Cl interactions. The C-H···Cl interactions occur between the aromatic ring hydrogen atoms and the chlorine atoms of the 2-chloropropionyl moiety of adjacent the molecules A. These interactions are weaker than the N–H···O and C–H···O interactions (Figure 7).

The C-H··· π interactions contributing to the crystal clustering and three-dimensional structure of the synthesized L^{NNN} compound were visualized by means of the Hirshfeld surface mapped by the shape index function. As shown in Figure 8, on the Hirshfeld surface mapped by the shape index function, the hollow orange (π ···H) and swollen blue regions (H··· π) correspond to C-H··· π interactions (Figure 8).

The 2D fingerprint plots associated with Hirshfeld surface analyzes of molecules A and B providing quantitative information for the intermolecular specific atom-to-atom contacts in the crystal lattice. The fingerprint plots were decomposed to highlight particular atom pairs in close contacts. Figure 9 shows the decomposed fingerprint plots of A and B molecules that are crystallographically independent. In the molecules A and B, the H…H (vdW) interactions have the highest contributions of the total Hirshfeld surface with 60.9 and 59.6%, respectively, and the contribution from the H…H contact is 1.3% more for molecule A compared to molecule B.

 Table 5. The natural charges of the atoms of LNNN molecule determined by natural bond analysis *.

 Atom
 Charge

	B3LYP	E	33PW91	В	LYP	n	nPW1PW91	Н	F	
	6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311
<u>C1</u>	-0 7037	-0 5888	-0 7298	-0.6024	-0 7007	-0 5961	-0 7299	-0.6012	-0.6561	-0.5096
C2	-0.2870	-0 2132	-0.3123	-0.2320	-0.2802	-0.2127	-0 3139	-0.2328	-0.2685	-0 1722
C13	-0.0978	-0.0940	-0.0762	-0.0812	-0.1010	-0.1015	-0.0810	-0.0794	-0.1063	-0.1163
C13	-0.0770	0.6702	-0.0702	-0.0012	-0.1010	-0.1013	-0.0010	0.6920	-0.1003	0.0250
05	0.0012	0.0792	0.0703	0.0744	0.0372	0.0412	0.0077	0.0029	0.0372	0.6239
NG NG	-0.0024	-0.0080	-0.0011	-0.0042	-0.3739	-0.3823	-0.0033	-0.0091	-0.7003	-0.0900
07	-0.0520	-0.0297	-0.0476	-0.0295	-0.0101	-0.0040	-0.0025	-0.0350	-0./405	-0.7215
L/	0.1276	0.1374	0.1276	0.1339	0.1257	0.1328	0.1254	0.1356	0.1313	0.1414
60	-0.2350	-0.2036	-0.2465	-0.2092	-0.2379	-0.2047	-0.2432	-0.2095	-0.1999	-0.1592
C9	-0.2470	-0.1996	-0.2494	-0.2043	-0.2383	-0.2010	-0.2567	-0.2035	-0.2527	-0.2037
C10	-0.2355	-0.1989	-0.2481	-0.2041	-0.2380	-0.1993	-0.2443	-0.2046	-0.2117	-0.1642
C11	-0.2/12	-0.2192	-0.2622	-0.2249	-0.2507	-0.2213	-0.2819	-0.2241	-0.2/33	-0.2297
C12	0.1412	0.1439	0.1273	0.1401	0.1241	0.1395	0.1402	0.1403	0.1861	0.1935
N13	-0.6368	-0.6619	-0.6757	-0.6613	-0.6485	-0.6381	-0.6442	-0.6656	-0.7177	-0.6953
C14	0.1570	0.1625	0.1418	0.1589	0.1371	0.1540	0.1557	0.1620	0.2057	0.2172
C15	-0.2797	-0.2353	-0.2758	-0.2418	-0.2626	-0.2310	-0.2903	-0.2446	-0.2876	-0.2473
C16	-0.2210	-0.1923	-0.2430	-0.1980	-0.2313	-0.1922	-0.2297	-0.1986	-0.2003	-0.1508
C17	-0.2570	-0.2023	-0.2513	-0.2079	-0.2389	-0.2020	-0.2666	-0.2097	-0.2616	-0.2156
C18	-0.2219	-0.2084	-0.2500	-0.2148	-0.2389	-0.2069	-0.2301	-0.2160	-0.1988	-0.1589
C19	0.1055	0.1276	0.1172	0.1233	0.1159	0.1249	0.1028	0.1231	0.1176	0.1287
N20	-0.6319	-0.5967	-0.6159	-0.5960	-0.5876	-0.5766	-0.6397	-0.6008	-0.7226	-0.6934
C21	0.7091	0.7012	0.7015	0.6964	0.6594	0.6609	0.7160	0.7063	0.8664	0.8557
022	-0.6870	-0.7143	-0.6993	-0.7120	-0.6667	-0.6827	-0.6928	-0.7194	-0.7847	-0.7821
C23	-0.2958	-0.2174	-0.3197	-0.2361	-0.2883	-0.2155	-0.3213	-0.2374	-0.2789	-0.1787
C24	-0.6999	-0.5839	-0.7264	-0.5968	-0.6989	-0.5915	-0.7250	-0.5954	-0.6559	-0.5033
Cl25	-0.0855	-0.0859	-0.0664	-0.0732	-0.0907	-0.0946	-0.0697	-0.0718	-0.0972	-0.1097
C26	-0.7037	-0.5888	-0.7298	-0.6024	-0.7007	-0.5961	-0.7299	-0.6012	-0.6561	-0.5096
C27	-0.2870	-0.2132	-0.3123	-0.2320	-0.2802	-0.2127	-0.3139	-0.2328	-0.2685	-0.1722
Cl28	-0.0978	-0.0940	-0.0762	-0.0812	-0.1010	-0.1015	-0.0810	-0.0794	-0.1063	-0.1163
C29	0.6812	0.6792	0.6765	0.6744	0.6372	0.6412	0.6877	0.6829	0.8372	0.8259
030	-0.6024	-0.6080	-0.6011	-0.6042	-0.5739	-0.5825	-0.6053	-0.6091	-0.7005	-0.6906
N31	-0.6526	-0.6297	-0.6478	-0.6293	-0.6161	-0.6048	-0.6623	-0.6357	-0.7485	-0.7215
C32	0.1276	0.1374	0.1276	0.1339	0.1257	0.1328	0.1254	0.1356	0.1313	0.1414
C33	-0.2350	-0.2036	-0.2465	-0.2092	-0.2379	-0.2047	-0.2432	-0.2095	-0.1999	-0.1592
C34	-0.2470	-0.1996	-0.2494	-0.2043	-0.2383	-0.2010	-0.2567	-0.2035	-0.2527	-0.2037
C35	-0.2355	-0.1989	-0.2481	-0.2041	-0.2380	-0.1993	-0.2443	-0.2046	-0.2117	-0.1642
C36	-0.2712	-0.2191	-0.2622	-0.2249	-0.2507	-0.2213	-0.2819	-0.2241	-0.2733	-0.2296
C37	0.1412	0.1439	0.1273	0.1401	0.1241	0.1395	0.1402	0.1403	0.1861	0.1935
N38	-0.6368	-0.6619	-0.6757	-0.6613	-0.6485	-0.6381	-0.6442	-0.6656	-0.7177	-0.6953
C39	0.1570	0.1625	0.1418	0.1589	0.1371	0.1540	0.1557	0.1619	0.2057	0.2172
C40	-0.2797	-0.2353	-0.2758	-0.2418	-0.2626	-0.2310	-0.2903	-0.2446	-0.2876	-0.2473
C41	-0.2210	-0.1923	-0.2430	-0.1980	-0.2313	-0.1922	-0.2297	-0.1986	-0.2003	-0.1508
C42	-0.2570	-0.2023	-0.2513	-0.2079	-0.2389	-0.2020	-0.2666	-0.2097	-0.2616	-0.2156
C43	-0.2219	-0.2084	-0.2500	-0.2148	-0.2389	-0.2069	-0.2301	-0.2160	-0.1988	-0.1589
C44	0.1055	0.1276	0.1172	0.1233	0.1159	0.1249	0.1028	0.1231	0.1176	0.1287
N45	-0.6319	-0.5967	-0.6159	-0.5960	-0.5876	-0.5766	-0.6397	-0.6008	-0.7226	-0.6933
C46	0.7091	0.7012	0.7015	0.6964	0.6594	0.6609	0.7160	0.7063	0.8664	0.8557
047	-0.6870	-0.7143	-0.6993	-0.7120	-0.6667	-0.6826	-0.6928	-0.7194	-0.7847	-0.7821
C48	-0.2958	-0.2174	-0.3197	-0.2361	-0.2883	-0.2155	-0.3213	-0.2374	-0.2789	-0.1787
C49	-0.6999	-0.5839	-0.7264	-0.5968	-0.6989	-0.5915	-0.7250	-0.5954	-0.6559	-0.5033
C150	-0.0855	-0.0859	-0.0664	-0.0732	-0.0907	-0.0946	-0.0697	-0.0718	-0.0972	-0.1097
H51	0.2531	0.2087	0.2572	0.2135	0.2476	0.2119	0.2629	0.2128	0.2395	0.1880
H52	0.2446	0.2075	0.2577	0.2124	0.2482	0.2103	0.2534	0.2121	0.2281	0.1778
H53	0.2644	0.2247	0.2742	0.2297	0.2631	0.2262	0.2733	0.2294	0.2511	0.1997
H54	0.2735	0.2136	0.2782	0.2192	0.2668	0.2146	0.2834	0.2192	0.2668	0.1951
H55	0.4448	0.4194	0.4500	0.4233	0.4373	0.4141	0.4516	0.4252	0.4529	0.4171
H56	0.2715	0.2388	0.2815	0.2444	0.2706	0.2389	0.2801	0.2446	0.2557	0.2112
H57	0.2432	0.2042	0.2523	0.2091	0.2414	0.2046	0.2524	0.2093	0.2361	0.1899
H58	0.2418	0.2033	0.2509	0.2082	0.2399	0.2036	0.2510	0.2085	0.2342	0.1874
H59	0 2479	0.2111	0 2562	0.2174	0 2 4 4 3	0.2113	0.2577	0.2178	0.2412	0.1978
H60	0.4362	0.4030	0.4427	0.4093	0.4306	0.4015	0.4445	0.4092	0.4408	0.3970
H61	0.2561	0 2224	0.2670	0 2290	0 2548	0.2216	0.2660	0 2299	0 2489	0.2066
H62	0.2461	0.2073	0.2558	0.2123	0.2446	0.2073	0.2553	0.2128	0.2376	0.1901
H63	0.2454	0.2076	0.2560	0.2125	0 2 4 4 9	0 2075	0.2547	0.2132	0.2376	0.1919
H64	0 2529	0.2265	0 2701	0.2330	0.2584	0 2 2 4 3	0.2615	0.2340	0.2460	0.2013
H65	0 4437	0 4235	0 4568	0 4273	0 4431	0 4175	0 4516	0 4287	0 4524	0 4136
H66	0 2924	0 2304	0.3027	0 2387	0 2873	0 2286	0.3040	0.2404	0.2828	0.2067
H67	0.2506	0.2056	0.2566	0.2107	0 2458	0 2079	0.2595	0.2105	0.2357	0.1825
H68	0.2500	0 2145	0 2657	0 2189	0.2561	0 2171	0 2661	0 2184	0 2441	0 1904
H69	0.2571	0 2291	0 2733	0 2234	0 2647	0 2 3 2 5	0 2705	0 2 2 2 6	0.2465	0.1952
H70	0.2510	0 2087	0.2572	0 2125	0 2476	0.2119	0.2629	0 2129	0 2395	0.1993
H71	0 2446	0 2075	0.2577	0 2124	0 2482	0 2103	0.2534	0.2121	0 2281	0.1778
H72	0.2644	0 2247	0 2742	0 2297	0 2631	0 2262	0 2733	0 2294	0 2511	0 1997
H73	0.2735	0 2136	0.2782	0 21 92	0.2668	0 2146	0 2834	0 2192	0.2668	0.1951
H74	0 4448	0 41 94	0.4500	0 4233	0 4 3 7 3	0 4141	0 4516	0.4252	0.4529	0 4 1 7 1
H75	0.7715	0.7194	0.2015	0.7233	0.2706	0.7220	0.7510	0.2446	0.2557	0.7171
H76	0.2432	0 2042	0.2513	0 2091	0 2414	0 2046	0 2524	0 2093	0.2361	0.1200
H77	0.2418	0 2033	0.2509	0 2082	0 2 3 9 9	0 2036	0.2510	0.2095	0 2342	0 1 974
H78	0.2479	0 2111	0.2562	0 2174	0 2443	0 2113	0.2577	0 2178	0 2412	0.1978
	J	··	0.2002	U / 1	0.2110	0.0110		0.21/0	··- · · · ·	J. I / / J

2019 - European Journal of Chemistry - CC BY NC - DOI: 10.5155/eurjchem.10.4.386-402.1921

Atom	Charge									
	B3LYP	B	BLYP	B	3LYP	B	3LYP	B	BLYP	B3LYP
	6-31	6-31	6-31	6-31	6-31	6-31	6-31	6-31	6-31	6-31
H79	0.4362	0.4030	0.4427	0.4093	0.4306	0.4015	0.4445	0.4092	0.4408	0.3970
H80	0.2561	0.2224	0.2670	0.2290	0.2548	0.2216	0.2660	0.2299	0.2489	0.2066
H81	0.2461	0.2073	0.2558	0.2123	0.2446	0.2073	0.2553	0.2128	0.2376	0.1901
H82	0.2454	0.2076	0.2560	0.2125	0.2449	0.2075	0.2547	0.2132	0.2376	0.1919
H83	0.2529	0.2265	0.2701	0.2330	0.2584	0.2243	0.2615	0.2340	0.2460	0.2013
H84	0.4437	0.4235	0.4568	0.4273	0.4431	0.4175	0.4516	0.4287	0.4524	0.4136
H85	0.2924	0.2304	0.3027	0.2387	0.2873	0.2286	0.3040	0.2404	0.2828	0.2067
H86	0.2571	0.2145	0.2657	0.2189	0.2561	0.2171	0.2661	0.2184	0.2441	0.1904
H87	0.2506	0.2056	0.2566	0.2107	0.2458	0.2078	0.2595	0.2105	0.2357	0.1825
H88	0.2618	0.2291	0.2733	0.2334	0.2647	0.2325	0.2705	0.2327	0.2465	0.1953
* 6 21.	$(210(d_{p})) (211)$	$(2110(d_{n}))$								

* 6-31: 6-31G(d,p); 6-311: 6-311G(d,p).

Table 6	. Mulliken charges of the atoms of L ^{NNN} molecule *.	
Atom	Charge	

	B3LYP	В	3PW91	В	LYP	m	PW1PW91	H	F	
	6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311	6-31	6-311
C1	-0.2922	-0.2331	-0.3661	-0.2715	-0.2597	-0.2238	-0.3694	-0.2713	-0.3072	-0.1589
C2	-0.2844	-0.3820	-0.3494	-0.4424	-0.2508	-0.3667	-0.3599	-0.4467	-0.3205	-0.3625
Cl3	-0.0937	-0.1034	-0.0631	-0.0835	-0.1000	-0.1121	-0.0670	-0.0804	-0.0976	-0.1391
C4	0.6159	0.4233	0.6356	0.4499	0.5766	0.3813	0.6412	0.4586	0.7812	0.5969
05	-0.4919	-0.3549	-0.4936	-0.3637	-0.4655	-0.3208	-0.4980	-0.3692	-0.5830	-0.4675
N6	-0.6653	-0.4782	-0.6947	-0.5170	-0.6024	-0.4327	-0.7095	-0.5268	-0.8377	-0.6314
C7	0.2705	0.1828	0.2843	0.2000	0.2789	0.1666	0.2689	0.2061	0.2478	0.1826
C8	-0.0882	-0.0630	-0.1211	-0.0673	-0.0794	-0.0620	-0.1164	-0.0625	-0.1004	-0.0293
C9	-0.1055	-0.0999	-0.1412	-0.1116	-0.0751	-0.0927	-0.1503	-0.1096	-0.1746	-0.1089
C10	-0.0925	-0.0862	-0.1293	-0.0947	-0.0648	-0.0794	-0.1350	-0.0921	-0.1431	-0.0721
C11	-0.1222	-0.0704	-0.1311	-0.0776	-0.0827	-0.0674	-0.1576	-0.0728	-0.1670	-0.1135
C12	0.2871	0.0857	0.2288	0.0802	0.2429	0.0930	0.2847	0.0710	0.2990	0.2086
N13	-0.7373	-0.5310	-0.7369	-0.5663	-0.6764	-0.4891	-0.7731	-0.5727	-0.8569	-0.6674
C14	0.3071	0.1251	0.2387	0.1227	0.2522	0.1184	0.3005	0.1248	0.3118	0.2627
C15	-0.1317	-0.0967	-0.1483	-0.1056	-0.0971	-0.0863	-0.1668	-0.1026	-0.1834	-0.1375
C16	-0.0878	-0.0857	-0.1320	-0.0961	-0.0677	-0.0753	-0.1289	-0.0972	-0.1374	-0.0612
C17	-0.1131	-0.1015	-0.1388	-0.1160	-0.0701	-0.0939	-0.1580	-0.1145	-0.1809	-0.1271
C18	-0.0762	-0.0588	-0 1184	-0.0621	-0.0784	-0.0556	-0.0992	-0.0603	-0 1095	-0.0462
C19	0.2245	0.1354	0.2609	0.1434	0.2595	0.1253	0.2136	0.1437	0.2218	0.1511
N20	-0.6166	-0.4318	-0.6547	-0.4675	-0 5582	-0 3891	-0.6597	-0.4753	-0 7895	-0 5899
C21	0.6319	0.4380	0.6501	0.4637	0.5302	0.3926	0.6633	0.4752	0.8042	0.5869
022	-0 5484	-0.4521	-0 5623	-0.4637	-0.5150	-0.4082	-0 5617	-0.4729	-0.6631	-0 5577
C23	-0 2719	-0 3142	-0.3355	-0.3666	-0.2377	-0.3059	-03487	-0.3697	-0.3065	-0.2691
C24	-0.3100	-0.2551	-0.3855	-0.2953	-0.2843	-0.2431	-0.3961	-0.2952	-03349	-0.2000
C12E	-0.3100	0.2001	0.0516	0.0001	0.2043	0.1126	0.0520	0.0200	0.0022	0.1200
626	0.07.73	0.1005	0.2661	0.0701	0.2507	0.1120	0.2604	0.0000	0.0033	0.1500
C27	-0.2922	-0.2331	-0.3001	-0.2713	-0.2397	-0.2238	-0.3094	-0.2713	-0.3072	-0.1369
C128	-0.2044	-0.3017	-0.0631	-0.9925	-0.2300	-0.1121	-0.0670	-0.0804	-0.0205	-0.3023
C20	0.6150	0.1034	0.6256	0.00000	0.1000	0.2012	-0.0070	0.4596	0.7012	0.1371
020	0.0139	0.4233	0.0330	0.4499	0.3700	0.3813	0.0412	0.4380	0.7812	0.3909
N21	0.4515	0.3347	0.4930	0.5057	0.4033	0.3200	0.7005	0.5072	0.000	-0.4073
C22	-0.0033	-0.4782	-0.0947	-0.3170	0.2790	-0.4327	-0.7093	-0.3208	-0.8377	0.0314
C32	0.2705	0.1626	0.2045	0.2000	0.2769	0.1000	0.2009	0.2001	0.2478	0.1627
C33	-0.0882	-0.0030	-0.1211	-0.0073	-0.0793	-0.0020	0.1502	-0.0023	-0.1004	-0.0293
C2F	-0.1055	-0.0999	-0.1412	-0.1110	-0.0751	-0.0927	-0.1505	-0.1096	-0.1740	-0.1069
C35	-0.0925	-0.0862	-0.1293	-0.0947	-0.0648	-0.0794	-0.1350	-0.0921	-0.1431	-0.0721
C27	-0.1222	-0.0705	-0.1511	-0.0776	-0.0627	-0.0074	-0.1570	-0.0726	-0.1070	-0.1154
U37 N20	0.2671	0.0655	0.2260	0.0602	0.2420	0.0950	0.2647	0.0710	0.2990	0.2066
N38 C20	-0./3/3	-0.5309	-0.7369	-0.5663	-0.6764	-0.4891	-0.7731	-0.5727	-0.8569	-0.6674
C39	0.3071	0.1250	0.2367	0.1227	0.2522	0.1164	0.3005	0.1246	0.5116	0.2020
C40	-0.1317	-0.0967	-0.1483	-0.1056	-0.0971	-0.0863	-0.1008	-0.1026	-0.1834	-0.1375
C41	-0.0878	-0.0857	-0.1320	-0.0961	-0.0677	-0.0753	-0.1289	-0.0972	-0.1374	-0.0612
C42	-0.1131	-0.1015	-0.1388	-0.1160	-0.0701	-0.0939	-0.1580	-0.1145	-0.1809	-0.1270
C43	-0.0762	-0.0588	-0.1184	-0.0621	-0.0784	-0.0556	-0.0992	-0.0603	-0.1095	-0.0462
C44	0.2245	0.1355	0.2609	0.1434	0.2595	0.1253	0.2136	0.1437	0.2218	0.1511
N45	-0.6166	-0.4318	-0.6547	-0.4675	-0.5582	-0.3891	-0.6597	-0.4753	-0.7895	-0.5899
C46	0.6319	0.4380	0.6501	0.4637	0.5729	0.3926	0.6633	0.4753	0.8042	0.5869
047	-0.5484	-0.4521	-0.5623	-0.4637	-0.5150	-0.4082	-0.5617	-0.4/29	-0.6631	-0.5577
C48	-0.2/19	-0.3142	-0.3355	-0.3666	-0.2377	-0.3059	-0.3487	-0.3697	-0.3065	-0.2691
C49	-0.3100	-0.2551	-0.3855	-0.2953	-0.2843	-0.2431	-0.3861	-0.2952	-0.3349	-0.2000
CI50	-0.0793	-0.1065	-0.0516	-0.0901	-0.0884	-0.1126	-0.0529	-0.0890	-0.0833	-0.1379
H51	0.1275	0.1167	0.1468	0.1332	0.1081	0.1122	0.1575	0.1332	0.1418	0.1077
H52	0.1127	0.1253	0.1452	0.1406	0.1049	0.1202	0.1415	0.1409	0.1251	0.1056
H53	0.1530	0.1491	0.1808	0.1656	0.1418	0.1422	0.1802	0.1660	0.1640	0.1333
H54	0.1778	0.2140	0.2031	0.2368	0.1553	0.2062	0.2103	0.2381	0.2119	0.2038
H55	0.3014	0.2593	0.3114	0.2698	0.2662	0.2445	0.3260	0.2736	0.3591	0.2928
H56	0.1291	0.1335	0.1698	0.1477	0.1042	0.1221	0.1703	0.1457	0.1887	0.1207
H57	0.0883	0.0969	0.1263	0.1069	0.0624	0.0879	0.1306	0.1056	0.1542	0.0995
H58	0.0862	0.0949	0.1237	0.1051	0.0594	0.0857	0.1286	0.1038	0.1533	0.0993
H59	0.0987	0.1007	0.1313	0.1155	0.0643	0.0918	0.1429	0.1134	0.1666	0.1136
H60	0.2722	0.2357	0.3011	0.2493	0.2599	0.2251	0.2977	0.2495	0.3304	0.2566
H61	0.1103	0.1213	0.1483	0.1371	0.0821	0.1104	0.1540	0.1365	0.1772	0.1278
H62	0.0951	0.1031	0.1331	0.1129	0.0689	0.0939	0.1374	0.1116	0.1604	0.1050

Table	able 6. Continued.										
Atom	Charge										
	B3LYP	B3LYP		B3LYP		B3LYP		B3LYP			
	6-31	6-31	6-31	6-31	6-31	6-31	6-31	6-31	6-31	6-31	
H63	0.0934	0.0979	0.1322	0.1072	0.0680	0.0892	0.1355	0.1055	0.1582	0.1053	
H64	0.1154	0.1449	0.1550	0.1636	0.0891	0.1313	0.1545	0.1629	0.1844	0.1351	
H65	0.2901	0.2650	0.3192	0.2749	0.2727	0.2507	0.3161	0.2770	0.3494	0.2833	
H66	0.1928	0.2297	0.2233	0.2572	0.1714	0.2148	0.2314	0.2631	0.2236	0.2172	
H67	0.1373	0.1286	0.1582	0.1448	0.1190	0.1231	0.1650	0.1456	0.1469	0.1177	
H68	0.1381	0.1403	0.1636	0.1551	0.1243	0.1352	0.1674	0.1550	0.1541	0.1288	
H69	0.1517	0.1574	0.1826	0.1755	0.1486	0.1530	0.1790	0.1746	0.1612	0.1353	
H70	0.1275	0.1167	0.1468	0.1332	0.1081	0.1121	0.1575	0.1332	0.1418	0.1077	
H71	0.1127	0.1253	0.1452	0.1406	0.1049	0.1202	0.1415	0.1409	0.1251	0.1056	
H72	0.1530	0.1491	0.1808	0.1656	0.1418	0.1422	0.1802	0.1660	0.1640	0.1333	
H73	0.1778	0.2140	0.2031	0.2368	0.1553	0.2062	0.2103	0.2381	0.2119	0.2038	
H74	0.3014	0.2593	0.3114	0.2698	0.2662	0.2445	0.3260	0.2736	0.3591	0.2928	
H75	0.1291	0.1335	0.1698	0.1477	0.1042	0.1221	0.1703	0.1457	0.1887	0.1207	
H76	0.0883	0.0969	0.1263	0.1069	0.0624	0.0879	0.1306	0.1056	0.1542	0.0995	
H77	0.0862	0.0949	0.1237	0.1051	0.0594	0.0857	0.1286	0.1038	0.1533	0.0993	
H78	0.0987	0.1007	0.1313	0.1155	0.0643	0.0918	0.1429	0.1134	0.1666	0.1136	
H79	0.2722	0.2356	0.3011	0.2493	0.2599	0.2251	0.2977	0.2495	0.3304	0.2566	
H80	0.1103	0.1213	0.1483	0.1371	0.0821	0.1104	0.1540	0.1365	0.1772	0.1278	
H81	0.0951	0.1031	0.1331	0.1129	0.0689	0.0939	0.1374	0.1116	0.1604	0.1050	
H82	0.0934	0.0979	0.1322	0.1072	0.0680	0.0892	0.1355	0.1055	0.1582	0.1053	
H83	0.1154	0.1449	0.1550	0.1636	0.0891	0.1313	0.1545	0.1629	0.1844	0.1351	
H84	0.2901	0.2650	0.3192	0.2749	0.2727	0.2507	0.3161	0.2770	0.3494	0.2833	
H85	0.1928	0.2297	0.2233	0.2572	0.1714	0.2148	0.2314	0.2631	0.2236	0.2172	
H86	0.1381	0.1403	0.1636	0.1551	0.1243	0.1352	0.1674	0.1550	0.1541	0.1288	
H87	0.1373	0.1286	0.1582	0.1448	0.1190	0.1231	0.1650	0.1456	0.1469	0.1177	
H88	0.1517	0.1574	0.1826	0.1755	0.1486	0.1530	0.1790	0.1746	0.1612	0.1354	

* 6-31: 6-31G(d,p); 6-311: 6-311G(d,p).

Figure 4. Hirshfeld surfaces mapped with *d*_{norm}, shape index and curvedness for L^{NNN} (Mol A and Mol B).

Despite the high share of H…H interactions, the role of these interactions in the stabilization of the crystal structure is quite small in importance because H…H interactions are between the same species. The C…H contacts, which refer to the C-H… π interactions described previously, contribute 21.3 (for Mol A) and 23.6% (for Mol B) of the Hirshfeld surfaces with $d_i + d_e \approx 2.8$ Å. On the other hands, although the

contribution of H···O/O···H interactions to the Hirshfeld surface is 14.7% and 13.8%, respectively, these interactions are the strongest interactions with $d_i + d_e \approx 1.9$ Å, and their roles in stabilizing the crystal structure is quite large.

Figure 5. N-H…O and C-H…O interactions between A and B molecules on Hirshfeld surface mapped by d_{norm} function.

Figure 6. Consequtive N-H…O and C-H…O interactions between the A and B molecules in the crystal lattice along the crystallographic [010] axis.

Figure 7. C-H···Cl interactions between molecules A on Hirshfeld surface mapped by *d*_{norm} function.

 $\label{eq:Figure 8.} \text{C-H} \cdots \pi \text{ interactions between two adjacent molecules on the Hirshfeld surface mapped by the shape index function.}$

Mol A

Figure 9. Decomposed 2D fingerprint plots of A and B molecules.

4. Conclusion

The present investigation thoroughly analyzed both the vibrational spectra, infrared and RAMAN of the title compound. All the vibrational bands observed in the IR and RAMAN spectra of the investigated compound are assigned to various modes of vibration. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution. The second aim of this work was to discover which method yields the most accurate results simultaneously for the IR and RAMAN frequencies as well as for the geometrical parameters of the title compound. The scaled B3LYP/6-31G(d,p) results are the best among the used methods. Thermodynamic properties such as energy, entropy, and enthalpy are also calculated. The presented structural and spectroscopic data of the title compound in this research can be used in the future in the analysis of similar compounds. In addition, the present quantum chemical study may lead to the understanding of properties and reactivity of redox active compounds. On the other hand, the 3D Hirshfeld surface analysis and 2D fingerprint plots revealed that the 0...H/H...O interactions represent an important contribution of the Hirshfeld surface result of hydrogen-bonding interactions in the molecules A and B.

Acknowledgements

This study was supported by Research Fund of Mersin University in Turkey with Project Number: 2018-1-TP2-2800.

Supporting information S

CCDC-1954366 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via <u>https://www.ccdc.cam.ac.uk/structures/</u>, or by e-mailing <u>data request@ccdc.cam.ac.uk</u>, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033.

Disclosure statement 📭

Conflict of interests: The authors declare that they have no conflict of interest.

Author contributions: All authors contributed equally to this work.

Ethical approval: All ethical guidelines have been adhered. Sample availability: Samples of the compounds are available from the author.

Funding 🜖

Mersin University http://dx.doi.org/10.13039/501100004172

ORCID 厄

Aysegul Suzan Polat
<u>http://orcid.org/0000-0002-0281-4011</u>
Ilkay Gumus
<u>http://orcid.org/0000-0002-9398-0057</u>
Hakan Arslan
<u>http://orcid.org/0000-0003-0046-9442</u>

References

- [1]. Lyaskovskyy, V.; Bruin, B. Am. Chem. Soc. Catal. 2012, 2, 270-279.
- [2]. Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Edit. 1998 37, 894-908.
- [3]. Wile, B. M.; Trovitch, R. J.; Bart, S. C.; Tondreau, A. M.; Lobkovsky, E.; Milsmann, C.; Bill, E.; Wieghardt, K.; Chirik, P. J. Inorg. Chem. 2009, 48(9), 4190-4200.
- [4]. Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik; P. J. J. Am. Chem. Soc. 2006, 128(16), 5302-5303.
- [5]. Tondreau, A. M.; Milsmann, C.; Patrick, A. D.; Hoyt, H. M.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132(42), 15046-15059.
- [6]. Skabara, P. J.; Pozo-Gonzalo, C.; Lardies, M. N.; Laguna, M.; Cerrada, E.; Luquin, A.; Gonzalez, B.; Coles, S. J.; Hursthouse, M. B.; Harrington, R. W.; Clegg, W. Dalton Trans. 2008, 23, 3070-3079.
- [7]. Mukherjee, C.; Pieper, U.; Bothe, E.; Bachler, V.; Bill, E.; Weyhermuller, T.; Chaudhuri, *P. Inorg. Chem.* **2008**, *47*(19), 8943-8956.
- [8]. Zhu, D.; Thapa, I.; Korobkov, I.; Gambarotta, S.; Budzelaar, P. H. M. Inorg. Chem. 2011, 50, 9879-9887.

- [9]. Dzik, W. I.; Van Der Vlugt, J. I.; Reek, J. N. H.; De Bruin, B. Angew. Chem., Int. Ed. 2011, 50, 3356-3358.
- Hindson, K.; De Bruin, B. Eur. J. Inorg. Chem. 2012, 3, 340-580. [10]
- Kaim, W. Coord. Chem. Rev. 1987, 76, 187-235. [11].
- Chirik, P.J. Inorg. Chem. 2011, 50(20), 9737-9914. [12].
- Van der Vlugt, J. I., Eur. J. Inorg. Chem. 2012, 3, 363-375. [13].
- Dzik, W. I.; Zhang, P. X.; de Bruin, B. Inorg. Chem. 2011, 50(20), 9896-[14]. 9903.
- [15]. Kaim, W. Coord. Chem. Rev. 2010, 254, 1580-1588.
- [16]. Nawn, G.; Waldie, K. M.; Oakley, S. R.; Peters, B. D.; Mandel, D.; Patrick, B. P.; McDonald, R.; Hicks, R. G. Inorg. Chem. 2011, 50, 9826-9837.
- Bowman, A. C.; Milsmann, C.; Hojilla, A. C. C.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. **2010**, *132(5)*, 1676-1684. [17].
- Bowman, C. A.; Milsmann, C.; Bill, E.; Lobkovsky, E.; Weyhermüller, T.; Wieghardt, K.; Chirik, P. J. *Inorg. Chem.* **2010**, *49*(*13*), 6110-6123. [18].
- Manuel, T. D.; Rohde, J. U. Am. Chem. Soc. 2009, 131(43), 15582-[19]. 15583.
- Rolle, C. J.; Hardcastle, K. I.; Soper, J. D. Inorg. Chem. 2008, 47(6), [20]. 1892-1894.
- [21]. Vlcek, A. Coord. Chem. Rev. 2010, 254(13-14), 1357-1357.
- Ward, M. D.; McCleverty, J. A. J. Chem. Soc. Dalton Trans. 2002, 3, 275-[22]. 288
- [23]. Smith, A. L.; Hardcastle, K. I.; Soper, J. D. J. Am. Chem. Soc. 2010, 132, 14358-14360.
- [24]. Arslan, H. Ligand design studies for metal catalyzed oxidation reactions. TUBITAK Project no: 112T322, 2012.
- Polat, A. S., MSc Thesis, Mersin University, Mersin, Turkey, 2019. [25]
- Polat, A. S.; Gumus, I.; Arslan, H. Int. Eng. Nat. Sci. Conf. Book, [26]. Diyarbakir, Turkey, 2019.
- Aydogdu, S. I., MSc Thesis, Mersin University, Mersin, Turkey, 2019. [27].
- [28]. Aydogdu, I.; Gumus, I.; Arslan, H. Int. Eng. Nat. Sci. Conf. Book, Diyarbakir, Turkey, 2019.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; [29]. Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc.; Wallingford CT, 2016.
- [30]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.
- [31]. Moller, C.; Plesset, M.S. Phys. Rev. 1934, 46(7), 618-622.
- [32]. Becke, A.D. J. Chem. Phys. 1993, 98(7), 5648-5652.

- [33]. Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37(2), 785-789.
- [34].
- Adamo, C.; Barone, V. *J. Chem. Phys.* **1998**, *108*(2), 664-675. Burke, K.; Perdew, J.P.; Wang, Y.; Dobson, J.F.; Vignale, G. M.P. Das (Eds.), Electronic Density Functional Theory: Recent Progress and [35]. New Directions, Plenum Press, New York, 1998.
- Predew, J.P.; Wang, Y. Phys. Rev. B 1992, 45(23), 13244-13249. [36].
- Foresman, B.; Frisch, E. Exploring Chemistry with Electronic [37]. Structure Methods: a Guide to Using Gaussian, Gaussian Pitttsburg, PA, 1993.
- Scott, A. P.; Radom, L. J. Chem. 1996, 100, 16502-16513. [38]
- [39]. Arslan, H.; Algul, O.; Dundar, Y. Vib. Spectrosc. 2007, 44, 248-255
- [40]. Arslan, H.; Algul, O. Spectrochim. Acta A 2008, 70, 109-116
- [41]. Yabalak, E.; Gunay, F.; Kasumov, V.; Arslan, H. Spectrochim. Acta A 2013, 110, 291-303
- [42]. Arslan, H.; Mansuroglu, D.; Vanderveer, D.; Binzet, G. Spectrochim. Acta A 2009, 72, 561-571.
- Arslan, H.; Demircan, A. Int. J. Mol. Sci. 2007, 8, 1064-1082. [43].
- [44]. Arslan, H.; Floerke, U.; Kulcu, N.; Binzet, G. Spectrochim. Acta A 2007, 68.1347-1355.
- [45]. Panchenko, Y. N. J. Mol. Struct. 2001, 567-568, 217-230.
- [46]. Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99(10), 3093-3100.
- Arslan, H. Performance Analysis of Vibrational Frequencies, 1.0, [47]. Mersin, Turkey, 2007.
- [48]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88(6), 899-926
- Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. J. Am. Chem. Soc. **1998**, 120(46), 12051-12068. [49].
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, [50]. P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17, University of Western Australia, http://hirshfeldsurface.net, 2017.
- [51]. Socrates, G. Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons Ltd. Chichester, 2001.
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.J. Spectrometric [52]. Identification of Organic Compounds, Wiley, 2014.
- [53]. Colt, N. B.; Daly, L. H.; Wiberly S. E. Introduction to Infrared and Raman Spectroscopy, 3th edition, Academic Press, Boston, 1990.
- Lebas, J. M.; Garrigou-Lagrange, C.; Josien, M. L. Spectrochim. Acta [54]. 1959, 15, 225-235.
- [55]. Wiberley, S. E.; Bunce, S. C.; Bauner, W. H. Anal. Chem. 1960, 32, 217-221.
- [56]. Linvien, D.; Cothup, N.B.; Fateley, W.G.; Graselli, J.G., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Boston, 1991.
- Beaula, T. J.; Joe, I. H.; Rastogi, V. K.; Jothy, V. B. Chem. Phys. Lett. [57]. **2015**, *624*, 93-101.
- [58]. Abraham, C. S.; Prasana, J. C.; Muthu, S. Spectrochim. Acta Mol. Biomol Spectrosc. 2017, 181, 153-163.
- [59]. Mulliken, R.S. J. Chem. Phys. 1955, 23, 1833-1840.
- [60]. Wang, J. W.; Zhang, Y. W.; Wang, M. X.; Luo, Y. H.; Sun, B. W. Polyhedron 2017, 124, 243-250.
- [61]. Spackman, M. A.; Jayatilaka, D. Cryst. Eng. Commun. 2009, 11, 19-32.

Copyright © 2019 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

402