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ABSTRACT

The EP: receptor inhibitory activity of 1,2-diarylcyclopentene derivatives have been
quantitatively analyzed in terms of Dragon descriptors. The derived QSAR models have
provided rationales to explain the EP1 receptor inhibitory activity of 1,2-diarylcyclopentene
derivatives. The 2D-autocorrelation descriptors (MATS4e, MATS5e, MATS7v, GATS5e and
GATS7v) have highlighted the role of atomic properties in respective lags of autocorrelations
to explain the biological actions of 1,2-diarylcyclopentene analogues. Presence of fluorine
atom (nF) and smaller distance between N and O atoms (T(N..0)) in molecular structures, in
EP; receptor antagonists addition to Kier-Hal.l el.e(.:trotopolc.)g.ical statgs (Ss) have also shown prevalence t.o optimize
Dragon descriptors the EP: receptor inhibitory activity. Partial least square analysis has confirmed the
QSAR dominance of information content of the combinatorial protocol in multiple linear regression
CP-MLR identified descriptors. Applicability domain analysis revealed that the suggested model
Partial least square analysis matches the high quality parameters with good fitting power and capability of assessing
external data. All the compounds are within the applicability domain of the proposed model
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and were evaluated correctly.

1. Introduction

The key mediator of pain and inflammation is
prostaglandin PGEz [1-5]. The first-line treatments for
inflammatory pains, including chronic low back pain, pain
associated with osteoarthritis and rheumatoid arthritis, are
selective COX-2 inhibitors and non-steroidal anti-inflammatory
drugs (NSAIDs), which interrupt the biosynthesis of PGE2 and
other prostaglandins (PGs) [6-11]. The gastrointestinal side
effects associated with NSAIDs have been successfully reduced
with selective COX-2 inhibitors [12-14]. The withdrawal of
Vioxx due to increased cardiovascular risk [15] alarmed toward
the safety profile of COX-2 inhibitors [16-23]. The PGE:z exert its
biological actions through binding to specific receptors with
seven transmembrane domains, the E-prostanoid (EP)
receptors. The EP receptors are classified into four subtypes,
EP1, EP2, EP3 and EPs [24-27], which are located both
peripherally and in the CNS [28]. These receptor subtypes are
distinguished by their distinct pattern of tissue distribution,
signaling pathways, and physiological functions. EP1 is coupled
to intracellular Ca%* mobilization, EP2 and EP4 are coupled to
stimulation of adenylate cyclase via Gs protein, and EP3 is
coupled to inhibition of adenylate cyclase via Gi protein. Studies
which were aimed to identify key structural requirements to
synthesize EP selective agonists and/or antagonists and to
provide insights to the mechanism of receptor ligand selectivity
revealed that sensitive positions for agonist-activity at the EP1
receptor is the hydroxyl group at the carbon 15 position and C-
1 carboxylate [29]. The selective EP1 antagonists may aid in
characterization of the effects mediated by this receptor
subtype [30-32]. The reported selective EP:1 receptor
antagonists are the acylhydrazide derivative SC51322 (by

Searle group) [31], ZD6416 (by AstraZeneca) [33,34], ONO-
8713 (by Ono) [35] and thiophene derivative ((by Merck
Frosst) [36]. Studies revealed that EP1 receptor plays a central
role in PGEz-mediated allodynia [37,38] and inflammatory pain
[39]. The efficacy of EP:1 receptor antagonists shown in
preclinical models [40-42], led to hypothesize that these
antagonists may furnish improved safety profile by sparing the
synthesis of PGs.

As an attempt to identify novel EP1 receptor antagonists,
recently, a series of 1,2-diarylcyclopentene derivatives has
been reported as potential clinically effective analgesics [43].
This study led to the discovery of GW848687X, a potential
candidate for the treatment of inflammatory pain. In view of
the importance of anti-inflammatory agents in the clinical
management of several disorders, a quantitative structure-
activity relationship is attempted on the EP: inhibitory activity
of these 1,2-diarylcyclopentene derivatives. The present study
is aimed at rationalizing the substituent variations of these
analogues to provide insight for the future endeavors.

2. Experimental
2.1. Data set

The reported thirty three 1,2-diarylcyclopentene
derivatives are considered as data set for the present study
[43]. These compounds were evaluated for their ability to
inhibit CYP450 enzymes in human recombinant CYP450 assays
in terms of ICso (molar concentration for 50% inhibition)
values. The structural variations and reported EP: inhibitory
activity (as pICso, on molar basis) of these analogues are given
in Table 1. For the purpose of modeling study all 33 analogues
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have been divided into training and test sets. Out of the 33
analogues, one fourth compounds (8) have been placed in the
test set for the validation of derived models. The test set was
generated in the SYSTAT [44] using the single linkage
hierarchical cluster procedure involving the Euclidean
distances of the activity. The selection of the test set from the
cluster tree was done in such a way to keep the test compounds
at a maximum possible distance from each other. The training
and test set compounds are also listed in Table 1.

2.2. Theoretical molecular descriptors

The structures of the compounds under study have been
drawn in 2D ChemDraw [45]. The drawn structures were then
converted into 3D modules using the default conversion
procedure implemented in the CS Chem3D Ultra. The energy of
these 3D-structures was minimized in the MOPAC module
using the AM1 procedure for closed shell systems. This will
ensure a well defined conformer relationship among the
compounds of the study. All these energy minimized structures
of respective compounds have been ported to DRAGON
software [46] for the computation of descriptors for the titled
compounds (Table 1). This software offers several hundreds of
descriptors from different perspectives corresponding to 0D-,
1D-, and 2D-descriptor modules. The outlined modules
comprised of ten different classes, namely, the constitutional
(CONST), the topological (TOPO), the molecular walk counts
(MWC), the BCUT descriptors (BCUT), the Galvez topological
charge indices (GALVEZ), the 2D autocorrelations (2D-AUTO),
the functional groups (FUNC), the atom-centered fragments
(ACF), the empirical descriptors (EMP), and the properties
describing descriptors (PROP). For each of these classes the
DRAGON software computes a large number of descriptors
which are characteristic to the molecules under multi-
descriptor environment. The definition and scope of these
descriptor’s classes is given in Table 2.

Both the 2D- and 3D-descripors may be used to obtain
significant QSARs. However, a QSAR study involving 0D to 2D-
descriptors is quite simple to interpret the biological data in
terms of different descriptors obtained from the two
dimensional structures of the compounds. In a congeneric
series, where a relative study is being carried out, the 2D-
descriptors may play important role in deriving the significant
correlations with biological activities of the compounds. Thus
the novelty and importance of a 2D-QSAR study is mainly due
to its simplicity for the calculations of different descriptors and
their interpretation (in physical sense) to explain the biological
actions of compounds in a congeneric series.

The combinatorial protocol in multiple linear regression
(CP-MLR) [47] and partial least-squares (PLS) [48-50]
procedures have been used in the present work for developing
QSAR models. Before the application of CP-MLR procedure, all
those descriptors which are intercorrelated beyond 0.90 and
showing a correlation of less than 0.1 with the biological
endpoints (descriptor vs. activity, r < 0.1) were excluded. This
has reduced the total dataset of the compounds from 457 to 88
descriptors as relevant ones for the EP: inhibitory activity. A
brief description of the computational procedure is given
below.

2.3. Model development

The CP-MLR is a ‘filter’ based variable selection procedure
for model development in QSAR studies [47]. Its procedural
aspects and implementation are discussed in some of our
recent publications [51-55]. It involves selected subset
regressions. In this procedure a combinatorial strategy with
appropriately placed ‘filters’ has been interfaced with MLR to
result in the extraction of diverse structure-activity models,
each having unique combination of descriptors from the

dataset under study. In this, the contents and the number of
variables to be evaluated are mixed according to the predefined
confines. Here the ‘filters’ are significance evaluators of the
variables in regression at different stages of model
development. Of these, filter-1 is set in terms of inter-
parameter correlation cutoff criteria for variables to stay as a
subset (filter-1, default value 0.3 and upper limit < 0.79). In
this, if two variables are correlated higher than a predefined
cutoff value the respective variable combination is forbidden
and will be rejected. The second filter is in terms of t-values of
regression coefficients of variables associated with a subset
(filter-2, default value 2.0). Here, if the ratio of regression
coefficient and associated standard error of any variable is less
than a predefined cutoff value then the variable combination
will be rejected. Since successive additions of variables to
multiple regression equation will increase successive multiple
correlation coefficient (r) values, square-root of adjusted
multiple correlation coefficient of regression equation, r-bar,
has been used to compare the internal explanatory power of
models with different number of variables. Accordingly, a filter
has been set in terms of predefined threshold level of r-bar
(filter-3, default value 0.71) to decide the variables’ ‘merit’ in
the model formation. Finally, to exclude false or artificial
correlations, the external consistency of the variables of the
model have been addressed in terms of cross-validated R2 or Q2
criteria from the leave-one-out (LOO) cross-validation
procedure as default option (filter-4, default threshold value
0.3 < Q2 < 1.0). All these filters make the variable selection
process efficient and lead to unique solution. In order to collect
the descriptors with higher information content and
explanatory power, the threshold of filter-3 was successively
incremented with increasing number of descriptors (per
equation) by considering the r-bar value of the preceding
optimum model as the new threshold for next generation.

2.4. Model validation

In this study, the data set is divided into training set for
model development and test set for external prediction.
Goodness of fit of the models was assessed by examining the
multiple correlation coefficient (r), the standard deviation (s),
the F-ratio between the variances of calculated and observed
activities (F). A number of additional statistical parameters
such as the Akaike’s information criterion, AIC [56,57], the
Kubinyi function, FIT [58,59], and the Friedman’s lack of fit,
LOF [60], (Egs. 1-3) have also been derived to evaluate the best
model.

AIC = RSSx (n’+2p') (1)
(n-p)

_ 'x(n-k-1) (2)

T m+K)x(1-17)

RS§£ (3)

LOF = _
P_km+n}

n

where, RSS is the sum of the squared differences between the
observed and the estimated activity values, k is the number of
variables in the model, p' is the number of adjustable
parameters in the model, and d is the smoothing parameter.
The AIC takes into account the statistical goodness of fit and the
number of parameters that have to be estimated to achieve that
degree of fit. The FIT, closely related to the F-value (Fisher
ratio), was proved to be a useful parameter for assessing the
quality of the models.
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Table 1. Structures and observed EP: receptor inhibitory activity of 1,2-diarylcyclopentene derivatives.
R Ar
7~ N\
pICso?
Compound X R Ar m Calcd.
Obsd. Eq.8 Eq.9 Eq.10 PLS

COOH

1 H H O/ 8.2 7.7 7.8 7.8 7.8
COOH

2 H 2,4-F, ‘©/ 7.6 7.9 7.9 7.9 7.9
COOH

3 H 3,4-Clz O/ 6.4 6.2 6.3 6.4 6.1
COOH

4c H 2-F4-Cl ©/ 7.3 7.4 7.7 7.6 7/
COOH

5c¢ H 4-OMe ‘©/ 7.0 6.6 7.0 6.8 7.0
COOH

6¢ Cl H ‘©/ 8.3 7.8 7.4 7.5 7/
COOH

7 Br H ‘©/ 7.9 8.2 8.0 8.0 8.1
COOH

8 Br 4-Cl ‘©/ 7.9 7.8 7.9 7.8 7.8
COOH

9 Br 4-F ©/ 7.7 8.1 8.3 8.1 79
COOH

10 Br 3,4-Cl2 ©/ 7.0 V2 6.9 7.0 7.0
COOH

11 Br 2,4-F2 ©/ 8.3 8.7 8.5 8.5 8.7
COOH

117 Br 2-F, 4-Cl ‘©/ 8.6 8.3 8.3 8.2 8.5
COOH

13 Br 4-OMe ‘©/ 7.4 7.1 7.2 7.1 7.3
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Table 1 (Continued).
pICso?
Compound X R Ar Calcd.
Obsd.? Eq.8 Eq.9 Eq.10 PLS
COOH
14 SMe H \©/ 7.2 7.2 7.4 7.5 7.5
COOH
15¢ SMe 4-F ‘©/ 7.5 7.2 7.7 7.6 7.4
COOH
16 SMe 2,4-F2 ‘©/ 7.8 7.8 7.9 8.0 8.1
COOH
17 SO:Me H ©/ 7.1 7.0 7.2 7.1 7.1
COOH
18 SO:Me 4-F ‘©/ 7.1 7.1 7.3 7.3 7.2
COOH
19 SO:Me 2,4-F2 ‘©/ 7.8 7.4 7.4 7.6 7.6
COOH
20 CN H ©/ 7.0 7.2 6.8 6.9 7.0
COOH
21 CN 4-F O/ 6.4 7.1 7.0 6.9 6.8
COOH
P2 CN 2,4-F ‘©/ 7.4 7.5 7.1 7.2 7.5
COOH
23 CN 4-Cl ©/ 6.7 6.6 6.7 6.6 6.6
COOH
X
24c CF3 H | 7.4 7.0 7.3 7.9 7.6
N
COOH
X
25 Br 4-F | 8.5 8.2 7.9 7.9 7.6
N__~
COOH
X
26¢ CF3 H | 8.0 7.8 8.2 8.7 8.1
—
N
COOH
X
27 a 4-F | 8.8 8.4 8.8 8.7 8.5
—
N
COOH
X
28 Cl H | 7.4 7.4 7.3 7.1 7.4
N
COOH
X
29 a 2,4-F, | 8.2 8.4 8.1 8.1 8.2
N \N/
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Table 1 (Continued).
pICso?
Compound X R Ar o Calcd.
Obsd. Eq.8 Eq.9 Eq.10 PLS
COOH
X
300 cl H | 6.7 6.4 6.4 6.6 6.7
N\%N
N COOH
Y J
31 cl H | 6.8 6.9 7.4 7.6 7.2
N__—
N COOH
N
32 cl 2,4-F2 | 8.7 8.1 8.6 8.5 8.4
=
N
N COOH
N
33 cl 2,4-F2 | 8.6 8.2 8.4 8.4 8.4
/

a0n molar basis.
bTaken from reference [43].
¢Compounds included in test set.

Table 2. Descriptor classes 2 used along with their definition and scope for modeling the EP: receptor inhibitory activity of 1,2-diarylcyclopentene derivatives.

Descriptor class (acronyms)

Definition and scope

Constitutional

(CONST)

Topological

(TOPO)

Molecular walk counts
(MwWC)

Modified Burden eigenvalues
(BCUT)

Galvez topological charge indices
(GALVEZ)
2D-autocorrelations
(2D-AUTO)

Functional groups

(FUNC)

Atom centered fragments
(ACF)

Dimensionless or 0D descriptors; independent from molecular connectivity and conformations
2D-descriptor from molecular graphs and independent conformations

2D-descriptors representing self-returning walks counts of different lengths

2D-descriptors representing positive and negative eigenvalues of the adjacency matrix, weights the diagonal
elements and atoms

2D-descriptors representing the first 10 eigenvalues of corrected adjacency matrix

Molecular descriptors calculated from the molecular graphs by summing the products of atom weights of the
terminal atoms of all the paths of the considered path length (the lag)

Molecular descriptors based on the counting of the chemical functional groups

Molecular descriptors based on the counting of 120 atom centered fragments, as defined by Ghose-Crippen

Empirical 1D-descriptors represent the counts of non-single bonds, hydrophilic groups and ratio of the number of
(EMP) aromatic bonds and total bonds in an H-depleted molecule

Properties 1D-descriptors representing molecular properties of a molecule

(PROP)

aReference [46].

The main disadvantage of the F-value is its sensitivity to
changes in k (the number of variables in the equation, which
describe the model), if k is small, and its lower sensitivity if k is
large. The FIT criterion has a low sensitivity toward changes in
k-values, as long as they are small numbers, and a substantially
increasing sensitivity for large k-values. The model that
produces the minimum value of AIC and the highest value of
FIT is considered potentially the most useful and the best. The
LOF takes into account the number of terms used in the
equation and is not biased, as are other indicators, toward large
numbers of parameters. A minimum LOF value infers that the
derived model is statistically sound.

The internal validation of derived model was ascertained
through the cross-validated index, Q2 from leave-one-out and
leave-five-out procedures. The LOO method creates a number
of modified data sets by taking away one compound from the
parent data set in such a way that each observation has been
removed once only. Then one model is developed for each
reduced data set, and the response values of the deleted
observations are predicted from these models. The squared
differences between predicted and actual values are added to
give the predictive residual sum of squares, PRESS. In this way,
PRESS will contain one contribution from each observation.
The cross-validated Q2Loo value may further be calculated as

4
QZLOO =1- PRES%SY ( )

where, SSY represents the variance of the observed activities of
molecules around the mean value. In leave-five-out procedure,
a group of five compounds is randomly kept outside the
analysis each time in such a way that all the compounds, for
once, become the part of the predictive groups. A value greater
than 0.5 of Q2-index hints toward a reasonable robust model.
The external validation or predictive power of derived
model is based on test set compounds. The squared correlation
coefficient between the observed and predicted values of
compounds from test set, r2rest, has been calculated as

2
2, =1- Z(YW(T%—”_YW (5)
est = P
z (Y(Test) - Y(Training))

where, Ypred(Testy and Y(resy) indicate predicted and observed
activity values, respectively of the test-set compounds, and
Y (rraining) indicate mean activity value of the training set. r2res: is
the squared correlation coefficient between the observed and
predicted data of the test-set. It suggests the fraction of
explained variance in the test set which is not part of
regression/model derivation. It is a measure of goodness of the
derived model equation. A high r2rest value is always good. But
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considering the stringency of test set procedures, often r2rest
values in the range of 0.500-0.600 are regarded as indicative
predictive models.

2.5. Y-randomization

Chance correlations, if any, associated with the CP-MLR
models were recognized in randomization test [61,62] by
repeated scrambling of the biological response. The data sets
with scrambled response vector have been reassessed by
multiple regression analysis. The resulting regression
equations, if any, with correlation coefficients better than or
equal to the one corresponding to the unscrambled response
data were counted. Every model has been subjected to 100
such simulation runs. This has been used as a measure to
express the percent chance correlation of the model under
scrutiny.

2.6. Applicability domain

The utility of a QSAR model is based on its accurate
prediction ability for new compounds. A model is valid only
within its training domain, and new compounds must be
assessed as belonging to the domain before the model is
applied. The applicability domain is assessed by the leverage
values for each compound [63]. A Williams plot (the plot of
standardized residuals versus leverage values (h) can then be
used for an immediate and simple graphical detection of both
the response outliers (Y outliers) and structurally influential
chemicals (X outliers) in the model. In this plot, the
applicability domain is established inside a squared area within
+x (standard deviations) and a leverage threshold h*. The
threshold h* is generally fixed at 3(k+1)/n (n is the number of
training-set compounds, and k is the number of model
parameters) whereas x = 2 or 3. Prediction must be considered
unreliable for compounds with a high leverage value (h > h*).
On the other hand, when the leverage value of a compound is
lower than the threshold value, the probability of accordance
between predicted and observed values is as high as that for
the training set compounds.

3. Results and discussion
3.1. QSAR results

To rationalize the substituent variations of the 1,2-
diarylcyclopentene derivatives to provide insight for the future
endeavors, 88 descriptors accounting 0D-, 1D- and 2D-
molecular features of the analogues have been subjected to CP-
MLR analysis with default ‘filters’ set in it. Statistical models in
two, three and four descriptor(s) have been derived
successively to achieve the best relationship correlating EP1
inhibitory activity. These models (with 88 descriptors) were
identified in CP-MLR by successively incrementing the filter-3
with increasing number of descriptors (per equation). For this
the optimum r-bar value of the preceding level model has been
used as the new threshold of filter-3 for the next generation.
The highest significant models in three and four descriptors are
given below.

pICso = -3.514 - 0.404(0.099)X0sol + 0.059(0.015)T(F..CI) +
5.345(1.061)BEHm4

n=25r=0.821,s=0.423, F = 14.501, rZranav(sd) =
0.335(0.126), Q200 = 0.521, Q2150 = 0.556, FIT = 1.279,

LOF = 0.261, AIC = 0.247, r2rest = 0.543, SEtest = 0.491, Ro? =
0.984, R'o? = 0.999, k = 1.007, k' = 0.989 (6)

pICso = -5.280 + 18.704(5.169)BELm3 - 10.160(2.418)BEHe6 +
5.700(1.058)MATS4e + 9.002(1.630)GATS7v

n=25,r=0.875,s=0.368, F = 16.308, rZranav(sd) =
0.376(0.133), Q200 = 0.614, Q%50 = 0.653, FIT = 1.591, LOF =
0.235, AIC = 0.203, r2t1est = 0.517, SEtest= 0.505, Ro2 = 0.533, R'¢2
=0.997,k = 1.046, k' = 0.953 (7

In above and all follow up regression equations, the values
given in the parentheses are the standard errors of the
regression coefficients. The r2mndv(sd) is the mean random
squared multiple correlation coefficient of the regressions in
the activity (Y) randomization study with its standard deviation
from 100 simulations. In the randomization study (100
simulations per model), none of the identified models has
shown any chance correlation. The SErtest is the standard error
of estimation for the test set activity values. Ro? and R'o? are the
coefficients of determination, predicted versus observed
activity and observed versus predicted activity, respectively
and k and k' are the slopes of regression lines, predicted versus
observed activity and observed versus predicted activity,
respectively with the intercept set to 0) through the origin [64].
The signs of the regression coefficients suggest the direction of
influence of explanatory variables in the models.

The participated descriptors X0sol and T(F..Cl), and BEHm4
in model (6) are from TOPO and BCUT class of Dragon
descriptors, respectively. The descriptor XOsol, solvation
connectivity index chi-0, has shown negative influence on the
activity. Thus, suggesting that a lower value of 0t order
solvation connectivity index would be favorable to the activity.
From the positive sign of regression coefficient of descriptor
T(F..Cl), the sum of topological distance between F and Cl
atoms, it is evident that a bigger value of such distance would
augment the activity. The descriptor BEHm4, the highest
eigenvalue n.4 of Burden matrix weighted by atomic masses,
contributed positively to the activity recommending a higher
value of this descriptor for improved inhibitory activity of 1,2-
diarylcyclopentene derivatives.

It is apparent from the participating descriptors in model
(7) that atomic properties such as atomic masses, Sanderson
electronegativities and van der Waals volumes played a pivotal
role in explaining the inhibitory actions of the titled
compounds. The descriptors, BELm3 and BEHe6 are BCUT
descriptors. From the signs of regression coefficients of it may
be ascertained that a higher value of descriptor BELm3, the
lowest eigenvalue n.3 of Burden matrix weighted by atomic
masses, and a lower value of descriptor BEHe6, the highest
eigenvalue n.6 of Burden matrix wighted by atomic Sanderson
electronegativities would be beneficiary to the activity.
Descriptors MATS4e and GATS7v are the 2D-autocorrelation
descriptors. Both these descriptors have shown positive
influence on activity recommending higher values of Moran
autocorrelation of lag 4 weighted by atomic Sanderson
electronegativities (MATS4e) and Geary autocorrelation of lag
7 weighted by atomic van der Waals’ volumes (GATS7v) for
elevated activity.

The four descriptor models could estimate 76.56 percent
variance in observed activity of the compounds. Considering
the number of observation in the dataset, models with up to
five descriptors were explored. A total number of 9 models,
sharing 14 descriptors among them, were obtained through CP-
MLR. All these 14 descriptors along with their brief meaning,
average regression coefficients and total incidence are listed in
Table 3, which will serve as a measure of their estimate across
these models. The given below are some five-descriptor models
for the activity. These models have accounted for up to 81
percent variance in the observed activities.

pICso = 1.434 + 0.035(0.016)Ss + 23.074(5.143)BELm3 -
15.631(3.343)BEHe6 + 3.992(1.245)MATS4e
+8.767(1.498)GATS7v

n=25r1r=0.901,5s=0.338,F = 16.472, rZranav(sd) =
0.460(0.117), Q%00 = 0.648, Q2150 = 0.680, FIT = 1.647, LOF =
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Table 3. Physical meaning, average regression coefficients and the total incidences, and MLR-like coefficients from PLS model of descriptors identified from five
parameter CP-MLR models for the EP; receptor inhibitory activity of 1,2-diarylcyclopentene derivatives.

No. Descriptors’ Class Descriptors’ symbol, and meaning Avg. reg. coef. (incidence)2 MLR-like coef. (fc) Order®

1 CONST Ss, sum of Kier-Hall electrotopological states 0.038 (2) -0.048 (-0.018) 13

2 CONST nF, number of fluorine atoms 0.321 (1) 0.175 (0.066) 11

3 CONST nX, number of halogen atoms 0.314 (2) 0.179 (0.068) 8

4 TOPO T(N..0), sum of topological distance between N and O atoms -0.020 (4) -0.276 (-0.104) 3

5 TOPO T(CL.CI), sum of topological distance between Cl and Cl  -0.480 (1) -0.287 (-0.108) 2
atoms

6 TOPO MW(C10, 10th order molecular walk count 4.663 (2) 0.178 (0.067) 10

7 BCUT BELm3, lowest eigenvalue n.3 of Burden matrix weighted by ~ 20.677 (5) 0.148 (0.056) 12
atomic masses

8 BCUT BEHe6, highest eigenvalue n.6 of Burden matrix weighted -13.661 (9) -0.340 (-0.128) 1
by atomic Sanderson electronegativities

9 2D-AUTO MATS7v, Moran autocorrelation of lag 7 weighted by atomic ~ -12.505 (6) -0.184 (-0.069) 6
van der Waals volumes

10 2D-AUTO MATS4e, Moran autocorrelation of lag 4 weighted by atomic ~ 4.213 (5) 0.209 (0.079) 5
Sanderson electronegativities

11 2D-AUTO MATS5e, Moran autocorrelation of lag 5 weighted by atomic ~ -11.805 (4) -0.183 (-0.069) 7
Sanderson electronegativities

12 2D-AUTO MATS6e, Moran autocorrelation of lag 6 weighted by atomic ~ 4.682 (1) -0.179 (-0.067) 9
Sanderson electronegativities

13 2D-AUTO GATS7v, Geary autocorrelation of lag 7 weighted by atomic ~ 8.540 (2) 0.245 (0.092) 4
van der Waals volumes

14 2D-AUTO GATS5e, Geary autocorrelation of lag 5 weighted by atomic ~ -2.596 (1) 0.025 (0.009) 14

Sanderson electronegativities

2 The average regression coefficient of the descriptor corresponding to all models and the total number of its incidences; the arithmetic sign of the coefficient

represents the actual sign of the regression coefficient in the models.

bMLR like regression coefficient of three-component PLS model; (fc) is fraction contribution of the regression coefficient to the activity; order indicates the order
of their significance in the PLS model; the constant term of PLS model is 7.592; number of compounds are 28. PLS regression and validation statistics: r = 0.906, s

=0.314, F = 32.099, Q2Lo0 = 0.739, Q2150 = 0.730, rZrest = 0.794.

0.241, AIC = 0.186, rrest = 0.599, SErest = 0.460, Ro? = 0.657, R'¢2
=0.997,k = 1.046, k' = 0.954 8

pICso = 54.539 - 0.018(0.006) T(N..0) ~14.550(2.225)BEHe6 -
14.116(2.174)MATS7v -15.617(3.126)MATS5e
- 2.595(0.641)GATS5e

n=25,r=0.898,s=0.343, F = 15.858, rZranav(sd) =
0.416(0.119), Q2Loo = 0.666, Q2150 = 0.728, FIT = 1.586, LOF =
0.248, AIC = 0.192, r2test = 0.600, SETest = 0.459, Ro2 = 0.991, R'o2
=0.999,k=1.007,k'=0.989 9)

pICso = 43.765 + 0.321(0.085)nF - 0.020(0.006)T(N..0) -
11.828(2.168)BEHe6 -12.694(2.276)MATS7v
-10.140(3.058)MATS5e

n=25r=0891,s = 0.353, F = 14.704, r2unay(sd) =
0.441(0.134), Q200 = 0.660, Q2150 = 0.607, FIT = 1.470, LOF =
0.264, AIC = 0.204, r2rest = 0.500, SEtest = 0.513, Ro? = 0.990, R'¢2
=0.999,k = 0.991,k' = 1.005 (10)

In the randomization study (100 simulations per model),
none of the identified models has shown any chance
correlation. For above EP: receptor inhibition models, ten high
I'andy Values from hundred Y-randomizations are included in
Table 4.

Table 4. Ten random correlation coefficients 2 (rranay) from the activity (Y)
randomization study of the models.

No. Eq. (8) Eq. (9) Eq. (10)
1 0.709 0.693 0.775
2 0.686 0.641 0.773
B 0.655 0.640 0.737
4 0.630 0.631 0.688
5 0.519 0.613 0.673
6 0.363 0.605 0.647
7 0.389 0.605 0.624
8 0.501 0.591 0.563
9 0.433 0.566 0.562
10 0.572 0.521 0.542

aValues of 10 high rranay recorded from 100 Y-randomizations.

The values greater than 0.5 of Q2-indices is in accordance to
a reasonable robust QSAR model. The pICso values of the

training set compounds calculated using Equations (8) to (10)
have been mentioned in Table 1. The models (8) to (10) are
validated with an external test set of eight compounds listed in
Table 1. The predictions of the test set compounds based on
external validation are found to be satisfactory as reflected in
the test set r2 (r2rest) values and the predicted activity values
are also reported in Table 1. The plot showing goodness of fit
between observed and calculated activities for the training and
test set compounds is given in Figure 1.

The descriptors BELm3, BEHe6, MATS4e and GATS7v,
which were emerged in models (6 and 7), have once again
shown their importance in five parameter models and convey
same inferences to the activity. The descriptor Ss, the sum of
Kier-Hall electrotopological states, and nF, number of fluorine
atoms in molecular structure are from CONST class. The
positive influence of these descriptors, in models, to the activity
demanded a higher value of Kier-Hall electrotopological states
and more number of fluorine atoms in a molecular structure for
improved activity. The TOPO class descriptor, T(N..0), the sum
of topological distance between N and O atoms, advocates
smaller distances between N and O atoms in a molecule for the
better inhibition activity. The remaining descriptors MATS7v,
MATS5e and GATS5e are 2D-AUTO class descriptors. All these
descriptors have contributed negatively to the activity. A higher
values of Moran autocorrelation of lag 7 weighted by atomic
van der Waals volumes (MATS7v), Moran and Geary
autocorrelations of lag 5 weighted by atomic Sanderson
electronegativities (MATS5e and GATS5e, respectively) would
be detrimental to the activity.

According to the test set R? values and the corresponding
Ro? and R'e? suggest that equations (7) and (8) have higher
predictive power when compared to other equations listed.
However, the k and k' values are within acceptable range for all
the models. In a comprehensive manner, the statistics emerged
from the test sets have validated the models and ranked
equations (7) and (8) as best bets.

A PLS (partial least squares) analysis has been carried out
on the 14 CP-MLR identified descriptors (Table 4) to facilitate
the development of a ‘single window’ structure-activity model
and to identify their (descriptors) potential in explaining the
EP1 receptor inhibition actions of 1,2-diarylcyclopentene
derivatives. It also gives an opportunity to make a comparison
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Figure 1. Plot of observed versus calculated pICso values for training and test set compounds.

of the relative significance among the descriptors. The fraction
contributions obtainable from the normalized regression
coefficients of the descriptors allow this comparison within the
modeled activity. For the purpose of PLS, the descriptors have
been autoscaled (zero mean and unit s.d.) to give each one of
them equal weight in the analysis. In the PLS cross-validation,
three components are found to be the optimum for these 14
descriptors and they explained 82.08% variance in the activity
(r=10.906, Q200 = 0.739, s = 0.314, F = 32.099, r2rest = 0.794).
The MLR-like PLS coefficients of these 14 descriptors are given
in Table 3. The calculated activity values of training and test set
compounds are in close agreement to that of the observed ones
and are listed in Table 1. For the sake of comparison, the plot
showing goodness of fit between observed and calculated
activities (through PLS analysis) for the training and test set
compounds is given in Figure 1. Figure 2 shows a plot of the
fraction contribution of normalized regression coefficients of
these descriptors to the activity (Table 3).

0.15

GATS7v
0.1 - MATS4e

0.05 -

-0.05 -

MATS7v

MATs5eATSE®

Fraction contribution
o

-0.1 -
TIN-O) tc1..cly
0.15 BEHe6

Figure 2. Plot of fraction contribution of MLR-like PLS coefficients
(normalized) of the 14 descriptors (Table 3) to EP: receptor inhibitory
activity of 1,2-diarylcyclopentene derivatives.

The PLS analysis has also suggested BEHe6 (a 2D-AUTO
class descriptor) as the most determining descriptor for
modeling the activity of the compounds (descriptor S. No. 8 in

Table 3; Figure 2). The other nine significant descriptors in
decreasing order of significance are T(Cl..Cl), T(N..O), GATS7v,
MATS4e, MATS7v, MATS5e, nX, MATS6e and MWC10
(descriptors S. No. 5, 4, 13, 10, 9, 11, 3, 12 and 6 in Table 3;
Figure 2). Except, T(CL.Cl), nX, MATS6e and MWC10, all these
descriptors are part of Equations 8-10 and convey same
inference in the PLS model as well. The TOPO class descriptor
T(CL..C1), the sum of topological distance between Cl and Cl
atom, advocates that the shorter distance between chlorine
atoms in a molecular structure would be beneficiary to the
activity. The positive influence of descriptor, nX (number of
halogen atoms) to the activity recommended the presence of
halogen atoms in a compound for improved activity. The
negative regression coefficient of the Moran autocorrelation of
lag 6 weighted by atomic Sanderson electronegativities
(descriptor MATS6e) advocates that a higher positive value of it
is detrimental to the activity. Descriptor MWC10 (a TOPO class
descriptor) representing 10t order molecular walk count
suggests a higher value of 10th order walk count to enhance the
activity. In comparison to these ten descriptors, the remaining
ones appear in lower order of significance to influence the
activity of the compounds (Table 3; Figure 2). It is also
observed that PLS model from the dataset devoid of 14
descriptors (Table 3) is inferior in explaining the activity of the
analogues.

3.2. Applicability domain

On analyzing the model applicability domain (AD) in the
Williams plot (Figure 3) of the model based on the whole data
set (Table 5), it has appeared that none of the compounds were
identified as an obvious outlier for the EP1 receptor inhibitory
activity if the limit of normal values for the Y outliers (response
outliers) was set as 3 (standard deviation) units. None of the
compounds was found to have leverage (h) values greater than
the threshold leverages (h*). For both the training set and test
set, the suggested model matches the high quality parameters
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Table 5. The derived models for the whole data set (n=33) in identified descriptors of Egs. 8-10 for the EP: receptor inhibitory activity of 1,2-diarylcyclopentene

derivatives.

Model r

S F Q2100 Q2150 Eq.

pICso = 2.407 + 0.033(0.012)Ss 0.886
+20.562(3.865)BELm3 - 14.289(2.801)BEHe6
+3.825(1.079)MATS4e + 8.556(1.352)GATS7v

pICso = 52.768 - 0.018(0.005)T(N..0) 0.884
- 14.092(1.967)BEHe6 - 13.952(1.885)MATS7v
- 12.840(2.306)MATS5e - 2.119(0.585)GATS5e

pICso = 45.743 + 0.235(0.072)nF 0.875
-~ 0.021(0.005)T(N..0) - 12.415(1.975)BEHe6
-12.681(2.043)MATS7v —8.425(2.527)MATS5e

0.342 19.814 0.683 0.678 8a

0.345 19.281 0.674 0.679 9a

0.357 17.685 0.665 0.662 10a

with good fitting power and the capability of assessing external
data. Furthermore, almost all of the compounds was within the
applicability domain of the proposed model and were
evaluated correctly.
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Figure 3. Williams plot for the training set and external prediction set for EP1
receptor inhibitory activity of 1,2-diarylcyclopentene derivatives. The
residuals for training and test set compounds are shown by A and O,
respectively. The horizontal dotted line refers to the residual limit (*3x
standard deviation) and the vertical dotted line represents threshold
leverage h* (= 0.720).

4. Conclusion

The derived QSAR models have provided rationales to
explain the EP:1 receptor inhibitory activity of 1,2-
Diarylcyclopentene  derivatives. The 2D-autocorrelation
descriptors (MATS4e, MATS5e, MATS7v, GATS5e and GATS7v)

and BCUT descriptors (BELm3 and BEHe6) have highlighted
the role of atomic properties in respective lags of
autocorrelations and eigen-values to explain the biological
actions of 1,2-diarylcyclopentene analogues. The presence of
fluorine atom (nF) and the smaller distance between N and O
atoms (T(N..0)) in molecular structures, in addition to Kier-Hall
electrotopological states (Ss) have also shown prevalence to
optimize the EP1 receptor inhibitory activity. The statistics
emerged from the test sets have validated the models and
suggested that the descriptors Ss, BELm3, BEHe6, MATS4e and
GATS7v are more important in comparison to other descriptors
to explain the inhibitory activity of the titled compounds. PLS
analysis has also confirmed the dominance of information
content of the CP-MLR identified descriptors. Applicability
domain analysis revealed that the suggested models have
acceptable predictability. All the compounds are within the
applicability domain of the proposed models and were
evaluated correctly.
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