X-ray crystal structure analysis of N^{\prime}-acetyl- N^{\prime}-phenyl-2-naphthohydrazide

Varun Sharma (D) 1, Indrajit Karmakar (D) 2, Goutam Brahmachari (D) ${ }^{2}$ and Vivek Kumar Gupta (D) 1,*
${ }^{1}$ Department of Physics, University of Jammu, Jammu Tawi-180006, India
2 Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, West Bengal, India
* Corresponding author at: Department of Physics, University of Jammu, Jammu Tawi-180006, India
e-mail: vivek.gupta2k9@gmail.com (V.K. Gupta).

RESEARCH ARTICLE

10.5155/eurjchem.13.3.253-258.2235

Received: 02 March 2022
Received in revised form: 29 April 2022
Accepted: 11 May 2022
Published online: 30 September 2022
Printed: 30 September 2022

KEYWORDS

Disorder
Hydrazones
Single-crystal
X-ray diffraction
Hirshfeld surface
Hydrogen bonding

Abstract

N^{\prime}-Acetyl- N^{\prime}-phenyl-2-naphthohydrazide, a biologically relevant organic molecule, was synthesized following a reported method and characterized based on its single X-ray crystallographic studies. The present manuscript deals with its detailed molecular interactions and X-ray crystal structure. Its space group is $P-1$ with the following unit cell parameters: $a=8.9164(7), b=9.7058(9), c=17.7384(12) \AA, \alpha=88.308(7)^{\circ}, \beta=89.744(6)^{\circ}$, $\gamma=86.744(7)^{\circ}$ and $Z=2$. Crystal structure was solved by direct method and refined by full matrix least squares procedure to a final R value of 0.0580 and to a GOOF value of 1.066. The X-ray diffraction analyses showed that the asymmetric unit contains two crystallographically independent molecules. The crystal structure is stabilized by elaborate network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds along with $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi \cdots \pi$ interactions to form supramolecular structures.

1. Introduction

Hydrazones are important class of biologically potent and pharmaceutically useful organic compounds [1-3]. They find many applications in fluorescent chemosensors [4,5], as auxiliaries in asymmetric synthesis [6], photo switches in photopharmacology [7], and linkers in preparing bifunctional molecules [8-10] and as ligands or directing groups in organic synthesis [11-13].
N, N^{\prime}-Diacylhydrazones are functionalized hydrazone derivatives which are reported to exhibit various biological activities, including antitumor, antidiabetic, anti-inflammation, and anti-infection [14-20]. The title compound, N^{\prime}-acetyl- N^{\prime} -phenyl-2-naphthohydrazide (1) was synthesized following a reported method [21] as shown in Scheme 1, and characterized based on its single X-ray crystallographic studies.

2. Experimental

2.1. General

For crystallization, 50 mg of compound N^{\prime}-acetyl- N^{\prime} -phenyl-2-naphthohydrazide (1) was dissolved in 5 mL DMSO and left for several days at ambient temperature which yielded yellowish block shaped crystals which was suitable for X-ray
diffraction analysis, were synthesized following the reported method as described in literature [21].

2.2. Crystal structure determination and refinement

The cell dimensions were determined by least-squares fit of angular settings of 3226 reflections in the θ range 2.27 to 27.97°. The value of $R_{\text {int }}=0.0187$ and $R_{\text {sigma }}=0.0381$ shows satisfactory quality of the data. The molecular structure solution was obtained by direct method procedure as using SHELXT [22]. Six cycles of full-matrix least-squares refinement was carried out and it brought the final R-factor to 0.0580 and to GOOF value of 1.066 .

All non-hydrogen atoms of the molecule were located in the best E-map and refined in anisotropic approximation using SHELXL [22]. The position of all the Hydrogen atoms bonded to carbon atoms were geometrically fixed and allowed to ride on the corresponding non -H atoms $\left(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA\right.$, and $\mathrm{U}_{\text {iso }}(\mathrm{H})$ $=1.5 \mathrm{U}_{\mathrm{eq}}$ of the attached C atoms for methyl groups and 1.2 $\mathrm{U}_{\text {eq }}(\mathrm{C})$ for other H atoms) except for H12, H35 and H35' atoms attached to nitrogen atoms N12, N35 and N35'. The residual electron density in the final difference Fourier map between $-0.27<\Delta \rho<0.61$. The geometry of the title molecule was calculated using WinGX [23], PARST [24] and PLATON [25] software. Crystallographic data are summarized in Table 1.

Table 1. Crystallographic characteristics, details of X-ray data collection, and structure refinement parameters for compound 1.

Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	304.34
Temperature (K)	150.01(10)
Crystal system	Triclinic
Space group	P-1
a, (Å)	8.9164(7)
b, (\AA)	9.7058(9)
c, (A)	17.7384(12)
$\alpha\left({ }^{\circ}\right)$	88.308(7)
$\beta\left({ }^{\circ}\right)$	89.744(6)
$\gamma\left({ }^{\circ}\right)$	86.744(7)
Volume (\AA^{3})	1531.9(2)
Z	4
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.320
$\mu\left(\mathrm{mm}^{-1}\right)$	0.087
F(000)	640.0
Crystal size (mm^{3})	$0.3 \times 0.2 \times 0.2$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection (${ }^{\circ}$)	4.206 to 51.996
Index ranges	$-10 \leq h \leq 10,-11 \leq k \leq 11,-21 \leq 1 \leq 12$
Reflections collected	8450
Independent reflections	$5935\left[\mathrm{R}_{\text {int }}=0.0187, \mathrm{R}_{\text {sigma }}=0.0381\right]$
Data/restraints/parameters	5935/936/547
Goodness-of-fit on F^{2}	1.060
Final R indexes $[\mathrm{I} \geq 2 \sigma$ (I$)]$	$\mathrm{R}_{1}=0.0580, \mathrm{wR}_{2}=0.1421$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0743, \mathrm{wR}_{2}=0.1579$
$\underline{\text { Largest diff. peak/hole (e. } .^{\circ}{ }^{-3} \text {) }}$	0.61/-0.27

Scheme 1. Synthesis of N^{\prime}-acetyl- N^{\prime}-phenyl-2-naphthohydrazide (1).

3. Results and discussion

The molecular structure containing the atomic labeling of the asymmetric unit of the crystal N^{\prime}-acetyl- N^{\prime}-phenyl-2naphthohydrazide is shown in Figure 2 [26]. The X-ray diffraction analyses showed that the asymmetric unit of compound 1 contains two crystallographically independent molecules A and B. The molecule consists of a naphthalene ring and a benzene ring connected through a N^{\prime}-acetylformo hydrazide bridge. In molecule B, the N^{\prime}-methyl $-N$-phenylaceto hydrazide moiety is disordered over two sites with an occupancy ratio of 0.7531:0.2469.

The geometric parameters, including bond distances and bond angles, show normal geometry [27] and are in close relation to the related structure N-(4-nitrobenzoyl)- N^{\prime} phenylhydrazine [28]. The length of the $\mathrm{N}-\mathrm{N}$ single bond between nitrogen atoms is $1.388(2) \AA$ in molecule A and the average value of $1.384 \AA$ in molecule B; this is close to the respective bond length of $1.390(4) \AA$ present in $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$. Here, the $\mathrm{N}-\mathrm{N}-\mathrm{C}$ bond angles deviate slightly from the ideal value of 120° by 1.1°, which is due to the presence of substitutions of acetyl groups and carbonyl groups at its ends. In molecule A, the acetyl group is $-s c$ to the hydrazine moiety as evident from the C11-N12-N13-C14 torsion angle value of $90.0(3)^{\circ}$. The substituent carbonyl groups have an average value of $\mathrm{C}=0$ bond length of $1.217 \AA$, which is very close to its standard value ($1.210 \AA,[26]$). Whereas, the $\mathrm{N}-\mathrm{N}-\mathrm{C}$ bond angle value of $118.7(3)^{\circ}$, the torsion angle value of $\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-07$ of $3.3(5)^{\circ}$ signifies that carbonyl group is $-s p$ to hydrazine moiety for molecule reported in literature [28]. In both title molecule 1 and the molecule of literature, nearly orthogonal values of torsion angle C-N-N-C signifies tendency of the lone-pair orbitals on nitrogen atoms to reduce the corresponding overlap and resonance integrals [28].

In the naphthalene ring systems, the endocyclic angles at $\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 8$ and C 8 ' are narrowed, while those at $\mathrm{C} 2, \mathrm{C} 6, \mathrm{C} 26, \mathrm{C} 27$, C29, C32', C31', C29', C26', C26', C27' and C24' are expanded from 120°, respectively. This would appear to be a real effect caused by the fusion of the smaller benzene ring systems by which the strain is taken up by the angular distortion [29]. All the benzene rings are individually planar which is evident from smaller values of torsion angles. In molecule A, the benzene ring is twisted with respect to the naphthalene ring at a dihedral angle of $87.01(6)^{\circ}$. Some of the important bond lengths and bond angles are listed in Table 2. The dihedral angle value of $79.86(0)^{\circ}$ shows that both the rings of the compound of the literature are also nearly orthogonal to each other [28].

Analysis of the crystal packing showed that there exists a network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds. 038 acts as an acceptor atom for two types of hydrogen bonds, by interactions with N 12 and C26 through H 12 and H26 hydrogen atoms resulting in a relatively stronger $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The hydrogen H35 on atom N35 of molecule B forms an intermolecular strong hydrogen bond with the carbonyl atom 015 of molecule A. In addition to this, there exists a wide array of $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi \cdots \pi$ interactions for crystal structure stabilization and to form supramolecular structures. The alkyl-aromatic hydrogen bond connects the parent molecules to their centrosymmetrically related molecules. The 90° angle for stacking rings is observed for 1-1, 1-2, 1-4, 1-5, 2-$1,2-4,4-1,4-2,4-4,4-5,5-1,5-4$, and 6-7 molecular pairs. The geometry of these interactions is presented in Tables 3 and 4, respectively. Here $\mathrm{Cg} I \cdots \mathrm{Cg} /$ represents the distance between the ring centroids; $\mathrm{Cg} I \cdots \mathrm{P}$ represents the perpendicular distance of the centroid of one ring from the plane of the other; α is the dihedral angle between the planes of rings I and $J ; \beta$ is the angle between the normal to the centroid of ring I and the line joining ring centroids; Δ is the displacement of the centroid of rings J

Table 2. Selected bond lengths and bond angles for non-hydrogen atoms (e.s.d.'s are given in parentheses) for compound 1.

Atom	Atom	Length (\AA)		Atom	Atom		Length (\AA)
C1	C2	1.362 (3)		C29	C30		1.403(6)
C1	C10	$1.412(4)$		C30	C31		$1.352(5)$
C1	C11	1.493(3)		C31	C32		$1.425(8)$
C2	C3	$1.431(3)$		C32	C33		1.412(7)
C3	C4	$1.408(3)$		C34	040		1.216(6)
C3	C8	$1.406(4)$		C34	N35		1.363 (6)
C4	C5	1.355(4)		N35	N36		1.408(12)
C5	C6	$1.409(4)$		C24'	C25'		1.331(15)
C6	C7	$1.341(4)$		C24'	C33'		1.446(15)
C7	C8	$1.441(4)$		C24'	C34'		1.45(3)
C8	C9	1.392(4)		C25'	C26'		1.465(17)
C9	C10	1.370 (4)		C26'	C27'		1.374(15)
C11	N12	1.364(3)		C26'	C31'		1.47(3)
C11	017	1.210 (3)		C27'	C28'		1.354(15)
C14	C16	1.488 (3)		C28'	C29'		1.405(16)
C14	N13	1.356(3)		C29'	C30'		1.346(17)
C14	015	1.223 (3)		C30'	C31'		1.42(3)
C18	C19	1.373 (3)		C31'	C32'		1.36(3)
C18	C23	1.375(3)		C32'	C33'		1.364(13)
C18	N13	1.434 (3)		C34'	040'		1.210(16)
C19	C20	1.385(3)		C34'	N35'		1.367(16)
C20	C21	$1.369(4)$		N35'	N36		1.36(4)
C21	C22	1.375(4)		C37	C39		1.490(3)
C22	C23	1.380 (3)		C37	N36		1.342 (3)
N12	N13	1.388(2)		C37	038		1.228(3)
C24	C25	$1.415(5)$		C41	C42		1.373 (3)
C24	C33	1.367(5)		C41	C46		1.376(3)
C24	C34	1.499 (8)		C41	N36		$1.435(3)$
C25	C26	1.356(5)		C42	C43		1.379 (3)
C26	C27	1.419 (5)		C43	C44		1.374(4)
C27	C28	1.418(6)		C44	C45		1.374(4)
C27	C32	1.401(10)		C45	C46		1.382(3)
C28	C29	1.363(6)					
Atom	Atom	Atom	Angle (${ }^{\circ}$)	Atom	Atom	Atom	Angle (${ }^{\circ}$)
C2	C1	C10	118.9(2)	C30	C31	C32	120.4(5)
C2	C1	C11	117.6(2)	C27	C32	C31	119.2(5)
C10	C1	C11	123.4(2)	C27	C32	C33	119.6(6)
C1	C2	C3	121.3(2)	C33	C32	C31	121.2(7)
C4	C3	C2	121.1(2)	C24	C33	C32	120.7(5)
C8	C3	C2	118.4(2)	040	C34	C24	122.4(6)
C8	C3	C4	120.5(2)	040	C34	N35	123.7(7)
C5	C4	C3	120.3(3)	N35	C34	C24	113.9(6)
C4	C5	C6	120.0(3)	C34	N35	N36	118.6(8)
C7	C6	C5	121.3(3)	C25'	C24'	C33'	121.6(12)
C6	C7	C8	120.5(3)	C25'	C24'	C34'	126.1(14)
C3	C8	C7	117.4(3)	C33'	C24'	C34'	112.2(13)
C9	C8	C3	119.6(2)	C24'	C25'	C26'	120.5(12)
C9	C8	C7	123.0(3)	C25'	C26'	C31'	116.4(13)
C10	C9	C8	120.7(3)	C27'	C26'	C25'	122.2(12)
C9	C10	C1	121.0(2)	C27'	C26'	C31'	121.4(15)
N12	C11	C1	114.9(2)	C28'	C27'	C26'	121.0(12)
017	C11	C1	123.6(2)	C27'	C28'	C29'	118.8(12)
017	C11	N12	121.5(2)	C30'	C29'	C28'	122.9(13)
N13	C14	C16	117.3(2)	C29'	C30'	C31'	121.0(17)
015	C14	C16	122.5(2)	C30'	C31'	C26'	115(2)
015	C14	N13	120.2(2)	C32'	C31'	C26'	120.0(18)
C19	C18	C23	120.9(2)	C32'	C31'	C30'	125(2)
C19	C18	N13	118.8(2)	C33'	C32'	C31'	122.4(14)
C23	C18	N13	120.2(2)	C32'	C33'	C24'	119.1(10)
C18	C19	C20	119.1(2)	040'	C34'	C24'	128(2)
C21	C20	C19	120.4(2)	040'	C34'	N35'	115(2)
C20	C21	C22	120.0(2)	N35'	C34'	C24'	117(2)
C21	C22	C23	120.2(2)	N36	N35'	C34'	119(3)
C18	C23	C22	119.4(2)	N36	C37	C39	117.6(2)
C11	N12	N13	119.10(19)	038	C37	C39	122.4(2)
C14	N13	C18	122.75(19)	038	C37	N36	120.0(2)
C14	N13	N12	120.06(18)	C42	C41	C46	120.8(2)
N12	N13	C18	116.81(18)	C42	C41	N36	118.8(2)
C25	C24	C34	122.8(4)	C46	C41	N36	120.3(2)
C33	C24	C25	119.8(4)	C41	C42	C43	119.5(2)
C33	C24	C34	117.3(5)	C44	C43	C42	120.3(2)
C26	C25	C24	120.2(4)	C45	C44	C43	119.8(2)
C25	C26	C27	121.2(4)	C44	C45	C46	120.4(2)
C28	C27	C26	122.1(4)	C41	C46	C45	119.1(2)
C32	C27	C26	118.5(4)	N35	N36	C41	113.6(4)
C32	C27	C28	119.4(4)	N35'	N36	C41	123.8(14)
C29	C28	C27	119.4(4)	C37	N36	N35	123.3(4)
C28	C29	C30	121.5(4)	C37	N36	N35'	112.5(13)
C31	C30	C29	120.0(4)	C37	N36	C41	123.11(19)

Table 3. Geometry of inter- and intra-molecular interactions for compound 1*

D-H.*A	D-H, Å	$\mathrm{H} \cdots \mathrm{A}, \mathrm{A}$	D $\cdots \mathrm{A}, \mathrm{A}$	$\theta(\mathrm{D}-\mathrm{H} \cdots \mathrm{A})$, deg
N12-H12 $\cdots 038{ }^{\text {i }}$	0.90(2)	1.92(2)	2.781(2)	159(2)
N35-H35..015 ${ }^{\text {ii }}$	0.90(2)	1.88(3)	2.747(11)	161(3)
C26-H26..038 ${ }^{\text {i }}$	0.93	2.59	3.490(4)	162
C6-H6..Cg8 ${ }^{\text {iii }}$	0.93	2.83	3.638(3)	146
C21-H21..Cg1 ${ }^{\text {iv }}$	0.93	2.76	3.617(3)	154
C29-H29..Cg3 v	0.93	2.75	3.528(5)	142
C39-H39A \cdots Cg7 vi	0.93	2.84	3.531(3)	130

Table 4. Geometry of $\pi-\pi$ interactions for compound 1*.

CgI	CgJ	CgI $\cdots \mathrm{Cg}$, ${ }_{\text {A }}$	CgI \cdots P, \AA	α, deg	$\boldsymbol{\beta}$, deg	Δ, \AA
1	$1{ }^{\text {i }}$	3.663	3.490	0.0	17.6	1.11
1	2^{i}	3.692	3.490	2.3	19.0	1.20
1	$4{ }^{i}$	3.674	3.452	1.1	20.1	1.25
1	5^{i}	3.636	3.457	1.1	20.1	1.13
2	$1{ }^{i}$	3.692	3.490	2.3	19.0	1.20
2	$4{ }^{i}$	3.794	3.428	1.9	24.4	1.64
4	$1{ }^{i}$	3.674	3.449	1.1	20.0	1.26
4	2^{i}	3.794	3.455	1.9	25.4	1.56
4	$4{ }^{i}$	3.939	3.427	0.0	29.5	1.94
4	5^{i}	3.507	3.426	1.4	13.6	0.74
5	1^{i}	3.635	3.440	1.9	18.8	1.26
5	$4{ }^{i}$	3.507	3.409	1.4	12.3	0.81
6	$7{ }^{\text {ii }}$	3.7686	3.4249	1.70	26.1	1.55

${ }^{*}$ Symmetric codes: (i) 1-x, 1-y, -z, (ii) -x, 2-y, 1-z. Cg1, Cg2, Cg4, Cg5, Cg6 and Cg7 represent the center of gravity of the rings (C24A/C25A/C26A/C32A/C33A), (C27A/C28A/C29A/C30A/C31A/C32A), (C24'/C25'/C26'/C31'/C32'/C33'), (C26'/C27'/C28'/C29'/C30'/C31'), (C1/C2/C3/C8/C9/C10) and (C3/C4/C5/C6/ C7/C8), respectively.

Figure 2. The molecular structure of the compound 1.

Figure 3. Packing view of molecules down to a and b-axis.
relative to the intersection point of the normal to the centroid of ring I and the least-squares plane of ring J. These $\pi \cdots \pi$ contacts describe the interactions present between the naphthalene ring and the benzene ring of compound 1 . The packing of the molecule within the unit cell viewed down the a and b-axis is shown in Figure 3. Molecules are packed together to form infinite layers along the (001) plane. Whereas the crystal packing arrangement for the related compound of the literature is linked to a complex three-dimensional framework structure by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ types of intermolecular H -bonds, resulting in sheet-like structure in dearth of other $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi \cdots \pi$ contacts [28].

4. Conclusions

Single crystal X-ray diffraction studies led to unambiguous crystal structure determination of the compound which crystallizes into triclinic crystal system with space group $P-1$. Direct methods were used to solve the crystal structure and refined by full matrix least squares procedure to final R value of 0.0580 . In molecule B, the moiety is disordered over two sites with an occupancy ratio of $0.7521: 0.2469$. A complete set of intermolecular hydrogen bonds; C-H $\cdots \pi$ and $\pi \cdots \pi$ interactions was observed and quantified for crystal packing analysis.

Acknowledgements

Vivek Kumar Gupta thanks University of Jammu, Jammu, India, for financial support under the Rashtriya Uchchatar Shiksha Abhiyan (RUSA) 2.0 Project. (Ref. No: RUSA/JU/2/2019-20/111/3588-3636). Bubun Banerjee thanks Akal University for financial assistance.

Supporting information S

CCDC-2110780 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via https://www.ccdc. cam.ac.uk/structures/, or by e-mailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: $+44(0) 1223-336033$.

Disclosure statement ©S

Conflict of interest: The authors declare that they have no conflict of interest. Ethical approval: All ethical guidelines have been adhered.
Sample availability: Samples of the compound are available from the author.

CRediT authorship contribution statement $\mathbb{C R}$

Conceptualization: Vivek Kumar Gupta, Goutam Brahmachari; Methodology: Varun Sharma, Indrajit Karmakar; Software: Varun Sharma, Indrajit Karmakar; Validation: Vivek Kumar Gupta, Goutam Brahmachari; Formal Analysis: Vivek Kumar Gupta, Goutam Brahmachari; Investigation: Indrajit Karmakar, Varun Sharma; Resources Vivek Kumar Gupta, Goutam Brahmachari; Data Curation: Varun Sharma, Indrajit Karmakar; Writing Original Draft: Varun Sharma, Indrajit Karmakar; Writing - Review and Editing: Vivek Kumar Gupta, Goutam Brahmachari; Varun Sharma, Indrajit Karmakar; Visualization: Goutam Brahmachari, Vivek Kumar Gupta; Funding acquisition: none; Supervision: Vivek Kumar Gupta, Goutam Brahmachari.

ORCID iD and Email ®

Varun Sharma
© varunsharma5228@gmail.com
iD https://orcid.org/0000-0003-2866-8638
Indrajit Karmakar

©ijk91.chem@gmail.com

(iD https://orcid.org/0000-0002-2713-8080
Goutam Brahmachari
© brahmg2001@yahoo.co.in
(iD) https://orcid.org/0000-0001-9925-6281

Vivek Kumar Gupta
vivek.gupta2k9@gmail.com
D https://orcid.org/0000-0003-2471-5943

References

[1]. Ding, Y.; Li, H.; Meng, Y.; Zhang, T.; Li, J.; Chen, Q.-Y.; Zhu, C. Direct synthesis of hydrazones by visible light mediated aerobic oxidative cleavage of the C-C bond. Org. Chem. Front. 2017, 4, 1611-1614.
[2]. Krátký, M.; Bősze, S.; Baranyai, Z.; Stolaříková, J.; Vinšová, J. Synthesis and biological evolution of hydrazones derived from 4(trifluoromethyl)benzohydrazide. Bioorg. Med. Chem. Lett. 2017, 27, 5185-5189.
[3]. Kauthale, S.; Tekale, S.; Damale, M.; Sangshetti, J.; Pawar, R. Synthesis, antioxidant, antifungal, molecular docking and ADMET studies of some thiazolyl hydrazones. Bioorg. Med. Chem. Lett. 2017, 27, 38913896.
[4]. Xiao, H.; Zhang, M.; Liu, J.; Han, Z.; Yang, L.; Wu, X. A novel rhodamine B fluorescent probe for $\mathrm{Hg} 2+$: Synthesis and evaluation. Youji huaxue 2016, 36, 2413-2418.
[5]. Yang, Y.; Gao, C.-Y.; Liu, J.; Dong, D. Recent developments in rhodamine salicylidene hydrazone chemosensors. Anal. Methods 2016, 8, 28632871.
[6]. Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. The SAMP-/RAMP-hydrazone methodology in asymmetric synthesis. Tetrahedron 2002, 58, 2253-2329.
[7]. Cvrtila, I.; Fanlo-Virgós, H.; Schaeffer, G.; Monreal Santiago, G.; Otto, S. Redox control over acyl hydrazone photoswitches. J. Am. Chem. Soc. 2017, 139, 12459-12465.
[8]. Dyniewicz, J.; Lipiński, P. F. J.; Kosson, P.; Leśniak, A.; Bochyńska-Czyż, M.; Muchowska, A.; Tourwé, D.; Ballet, S.; Misicka, A.; Lipkowski, A. W. Hydrazone linker as a useful tool for preparing chimeric peptide/nonpeptide bifunctional compounds. ACS Med. Chem. Lett. 2017, 8, 73-77.
[9]. Bajorowicz, B.; Nadolna, J.; Lisowski, W.; Klimczuk, T.; ZaleskaMedynska, A. The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts. Appl. Catal. B 2017, 203, 452-464.
[10]. Mathew, B.; Suresh, J.; Ahsan, M. J.; Mathew, G. E.; Usman, D.; Subramanyan, P. N. S.; Safna, K. F.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: a review. Infect. Disord. Drug Targets 2015, 15, 76-88.
[11]. Huang, Z.; Wang, C.; Dong, G. A hydrazone-based exo-directing-group strategy for β C-H oxidation of aliphatic amines. Angew. Chem. Int. Ed Engl. 2016, 55, 5299-5303.
[12]. Chourasiya, S. S.; Kathuria, D.; Nikam, S. S.; Ramakrishnan, A.; Khullar, S.; Mandal, S. K.; Chakraborti, A. K.; Bharatam, P. V. Azine-hydrazone tautomerism of guanylhydrazones: Evidence for the preference toward the azine tautomer. J. Org. Chem. 2016, 81, 7574-7583.
[13]. Ros, A.; López-Rodríguez, R.; Estepa, B.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. Hydrazone as the directing group for Ir-catalyzed arene diborylations and sequential functionalizations. J. Am. Chem. Soc. 2012, 134, 4573-4576.
[14]. Plasencia, C.; Dayam, R.; Wang, Q.; Pinski, J.; Burke, T. R., Jr; Quinn, D. I.; Neamati, N. Discovery and preclinical evaluation of a novel class of small-molecule compounds in hormone-dependent and -independent cancer cell lines. Mol. Cancer Ther. 2005, 4, 1105-1113.
[15]. Seow, H. A.; Penketh, P. G.; Shyam, K.; Rockwell, S.; Sartorelli, A. C. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy] carbonyl]hydrazine: an anticancer agent targeting hypoxic cells. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 9282-9287.
[16]. Kolotova, N. V.; Koz'minykh, E. N.; Kolla, V. É.; Syropyatov, B. Y.; Voronina, E. V.; Koz'minykh, V. O. Substituted amides and hydrazides of 1,4-dicarboxylic acids. Part 7. Synthesis and pharmacological activity of some maleic, succinic, and phthalic acid acylhydrazides. Pharm. Chem. J. 1999, 33, 248-254.
[17]. Forsman, H.; Kalderén, C.; Nordin, A.; Nordling, E.; Jensen, A. J.; Dahlgren, C. Stable formyl peptide receptor agonists that activate the neutrophil NADPH-oxidase identified through screening of a compound library. Biochem. Pharmacol. 2011, 81, 402-411.
[18]. Witkowski, P. T.; Schuenadel, L.; Wiethaus, J.; Bourquain, D. R.; Kurth, A.; Nitsche, A. Cellular impedance measurement as a new tool for poxvirus titration, antibody neutralization testing and evaluation of antiviral substances. Biochem. Biophys. Res. Commun. 2010, 401, 3741.
[19]. He, M.; Cheng, N.; Gao, W.-W.; Zhang, M.; Zhang, Y.-Y.; Ye, R. D.; Wang, M.-W. Characterization of Quin-C1 for its anti-inflammatory property in a mouse model of bleomycin-induced lung injury. Acta Pharmacol. Sin. 2011, 32, 601-610.
[20]. Joshi, S. D.; Dixit, S. R.; Kulkarni, V. H.; Lherbet, C.; Nadagouda, M. N.; Aminabhavi, T. M. Synthesis, biological evaluation and in silico
molecular modeling of pyrrolyl benzohydrazide derivatives as enoyl ACP reductase inhibitors. Eur. J. Med. Chem. 2017, 126, 286-297.
[21]. Liu, L.; Feng, S. Ligand-free $\mathrm{Cu}(i i)$-mediated aerobic oxidations of aldehyde hydrazones leading to $\mathrm{N}^{\prime} \mathrm{N}^{\prime}$-diacylhydrazines and 1,3,4oxadiazoles. Org. Biomol. Chem. 2017, 15, 2585-2592.
[22]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
[23]. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.
[24]. Nardelli, M. PARST95 - an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J. Appl. Crystallogr. 1995, 28, 659-659.
[25]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
[26]. Farrugia, L. J. ORTEP-3 for Windows - a version ofORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565-565.
[27]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Guy Orpen, A.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2 1987, S1-S19.
[28]. Wardell, J. L.; Low, J. N.; Glidewell, C. N-(4-nitrobenzoyl)-N'-phenyl hydrazine: a three-dimensional hydrogen-bonded framework. Acta Crystallogr. C 2007, 63, o334-6.
[29]. Sharma, V.; Karmakar, I.; Brahmachari, G.; Gupta, V. K. Synthesis, spectroscopic characterization, crystal structure, theoretical (DFT) studies and molecular docking analysis of biologically potent isopropyl 5-chloro-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-car boxylate. Mol. Cryst. Liq. Cryst. 2022, 1-22.

(c) (i) (c)

Copyright © 2022 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurichem.com/index.php/eurichem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

