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The N,O-linked Cu(II)-based coordination complex was synthesized hydrothermally and 
characterized by SC-XRD, FTIR spectroscopy, and FE-SEM. Single crystal X-ray diffraction 
studies showed that the complex crystallizes in a square pyramidal geometry and belongs 
to the monoclinic crystal system with the space group P21/n. Crystal data for C14H13CuN3O6: 
a = 8.7355(11) Å, b = 17.646(2) Å, c = 9.8036(12) Å, β = 98.506(6)°, V = 1494.6(3) Å3, Z = 4, 
μ(MoKα) = 1.500 mm-1, Dcalc = 1.701 g/cm3, 5120 reflections measured (4.616° ≤ 2Θ ≤ 
49.982°), 1953 unique (Rint = 0.0316, Rsigma = 0.0718) which were used in all calculations. 
The final R1 was 0.0380 (I > 2σ(I)) and wR2 was 0.0972 (all data). The experimental 
antibacterial activity studies performed using the disc diffusion method revealed that the 
complex is indeed acting as a good antibacterial agent against Staphylococcus aureus and 
Escherichia coli. A better understanding of the binding mechanisms was uncovered through 
comparative molecular docking investigations. The docking score for the target S. aureus 
glyrase complex with DNA (PDB id-2XCS) was found to be -7.1 kcal/mol, while the docking 
score for dialkylglycine decarboxylase (PDB id-1D7U) was -5.2 kcal/mol. The high docking 
score of the complex with the target protein allowed the complex to act as a potential 
antibacterial agent. These results were also supported by other theoretical studies such as 
DFT calculations and pharmacokinetic studies. The correlation between the HOMO-LUMO 
energy gap and antibacterial activity was studied computationally. Hirshfeld surface 
analysis and pharmacokinetic studies were also performed for this crystal for a better 
understanding of the intermolecular interactions and ADME properties. 
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1. Introduction 
 

Due to the astounding architectures, topologies and diverse 
potential applications as catalysts and chemical sensors, the 
design and synthesis of coordination complexes has attracted 
tremendous attention globally [1-4]. Many factors, including 
the geometry of coordination preferred by a specific metal ion, 
pH, nature of the counterions, temperature, and ligand 
geometry, can influence the architecture and functions of the 
products [5]. The hydrothermal synthesis of metal complexes 
has recently received considerable attention because it is one of 
the greener ways of synthesizing a complex. Unlike many other 
advanced synthetic methods, the hydrothermal method uses 
relatively inexpensive instrumentation and precursors [6]. 
From an environmental standpoint, this method is more 
environmentally benign than many other synthetic methods [7-
11]. Furthermore, by this method, we can readily obtain or 
control the rate and uniformity of nucleation, crystal formation, 
and aging, all of which affect the crystal size, morphology, and 
aggregation. This simple method requires no catalyst, toxic and 
expensive surfactant, or template, making it an ideal method for 
large-scale manufacturing of high-quality, dislocation-free 
single crystals.  

Because Cu(II) is biologically important, the synthesis of 
various biologically useful Cu(II) complexes is becoming an 

urgent need. Cu(II) ions and their complexes have continued to 
catch the eye of coordination chemists because of their diverse 
structural features, utility as models for the active centres of 
various metalloenzymes, catalytic, electronic, magnetic and 
biological properties [12-14]. 

Dipicolinic acid is a good candidate for coordination with 
transition metals in this respect because of its ability to form 
chelates through its two O atoms and one N atom, which 
provides extra stability to the complex formed. Pyridine-2,6-
dicarboxylic acid (H2dipic) is a polydentate ligand that can form 
stable chelates with oxo-metal cations and simple metal ions, 
thus exhibiting a wide variety of coordination behaviours. 
Dipicolinates (dipic) are often coordinated with transition 
metal ions through carboxylate bridges between the metal 
centres, forming dimeric or polymeric complexes [15-18] or by 
tridentate chelation (O, N, O′) to a single metal ion [17,18]. 
Dipicolinic acid has its applications in analytical chemistry [19], 
corrosion inhibition, nuclear reactor decontamination [20], and 
many biological activities [21]. Benzimidazole (BMZ), a 
heterocyclic aromatic compound, is very well known for its 
antimicrobial properties [22]. 

In this study, we report the synthesis of a Cu (II)-based 
coordination complex having the molecular formula C14H11Cu 
N3O5·H2O using Cu(NO3)·2H2O, pyridine-2,6-dicarboxylic acid 
and  benzimidazole using  the  hydrothermal  method.  Although  
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Table 1. Crystal data and structure refinement for complex. 
Empirical formula C14H13N3O6Cu 
Formula weight (g/mol) 382.81 
Temperature (K) 296(2) 
Crystal system Monoclinic 
Space group P21/n 
a, (Å) 8.7355(11) 
b, (Å) 17.646(2) 
c, (Å) 9.8036(12) 
β (°) 98.506(6) 
Volume (Å3) 1494.6(3) 
Z 4 
ρcalc (g/cm3) 1.701 
μ (mm-1) 1.500 
F(000) 780.0 
Crystal size (mm3) 0.18 × 0.17 × 0.16 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection (°) 4.616 to 49.982 
Index ranges -10 ≤ h ≤ 10, -16 ≤ k ≤ 20, -11 ≤ l ≤ 11 
Reflections collected  5120 
Independent reflections  1953 [Rint = 0.0316, Rsigma = 0.0718] 
Data/restraints/parameters  1953/1/223 
Goodness-of-fit on F2  0.929 
Final R indexes [I≥2σ (I)]  R1 = 0.0380, wR2 = 0.0932 
Final R indexes [all data]  R1 = 0.0585, wR2 = 0.0972 
Largest diff. peak/hole (e.Å-3) 0.36/-0.30 

 
Dong et al. reported the synthesis of a similar complex (CCDC-
777866) under reflux conditions, they obtained single crystals 
suitable for SC-XRD only after 20 days [23]. In addition, no other 
experimental and theoretical studies were reported for the 
complex. Here, we report the synthesis of the complex in just 72 
hours using the hydrothermal method [24] as an alternative 
time-efficient method. In addition, using the disc diffusion 
technique [25], antibacterial activity was examined against 
Gram-positive and Gram-negative bacteria strains of 
Staphylococcus aureus and Escherichia coli, respect-tively. 
Molecular docking studies were also performed against the 
respective protein targets to comprehend the binding activity. 
Computational studies were performed to find the relationship 
between antibacterial activity and the HOMO-LUMO energy 
gap. Furthermore, Hirshfeld surface analysis [26] and 
pharmacokinetic studies were also performed to better 
understand the intermolecular interactions and ADME 
properties [27]. 
 
2. Experimental 
 
2.1. Materials  
 

Copper nitrate (Cu(NO3)2·2H2O, 98% pure), 2,6-pyridine 
dicarboxylic acid (dipicolinic acid, 99%pure), benzimidazole 
(98% pure) and triply distilled deionized water (with specific 
conductance <1×10-6 S·cm-1 at 25 °C) were used during 
synthesis. All of these compounds were of A.R. grade 
(purchased from S.D. Fine-Chem Limited, India) and were used 
without additional purification.  
 
2.2. Instrumentations  
 

The FT-IR spectrum was obtained at ambient temperature 
using a Perkin Elmer FT-IR spectrometer (RX-1) in the region 
4000 to 400 cm-1. The sample was pressed into a pellet after 
being diluted with IR grade KBr (Sigma-Aldrich, Germany). The 
morphology of the crystal was investigated by field emission 
scanning electron microscopy (FESEM, JSM-IT 100). Data for 
single crystal X-ray diffraction were obtained using Bruker 
SMART CCD area-detector diffractometer and the relevant 
software [28]. 

2.3. Synthesis of copper complex 
 

The copper complex was synthesized hydrothermally at 
120 °C in a 5 mL Teflon-lined stainless-steel autoclave under 
autogenous pressure. A mixture of Cu(NO3)2·2H2O (241 mg, 1 
mmol), dipicolinic acid (167 mg, 1 mmol), and benzimidazole 
(118 mg, 1 mmol) was pulverized using an agate mortar and 
pestle. The mixture was then poured into a 5 mL Teflon lined 
stainless steel autoclave and distilled water (3.0 mL) was added 
to it, then the mixture was stirred for about 40 min until a 
homogeneous suspension was obtained. The autoclave was 
then sealed and the reaction mixture was heated for 72 h in an 
automated hot air oven at 120 °C. After 72 h, the autoclave was 
left for approximately 10 h to cool naturally at room 
temperature. The initial pH of the suspension was around 3 and 
remained constant after the reaction was complete. The 
reaction mixture was filtered and washed multiple times with 
triply distilled deionized water and ethanol. The solid residue 
obtained was allowed to air dry for several hours. Yield: 379 mg 
(72% based on copper). Blue-colored crystals having needle-
like shape, suitable for single-crystal XRD, were obtained. It was 
collected by hand picking under a microscope (40×). The 
complex obtained was completely soluble in dimethyl sulfoxide 
and did not melt up to 300 °C. 
 
2.4. Single crystal structure determination 
 

The single crystal of the complex was analyzed using a 
Bruker Smart Apex II X-ray single crystal diffractometer 
equipped with Kryoflex liquid N2 attachment for crystal 
mounting. Radiation used was MoKα (λ = 0.71073 Å) and 
absorption multi-scan [28] was applied to all data and analysed 
with related softwares [28,29]. The structure of the complex 
was solved and refined using SHELX-97 software [28]. The 
crystal data of the C14H11CuN3O5·H2O complex (CCDC Depo-
sition number: 2286899) was found to closely resemble the 
reported complex (CCDC Deposition number: 777866) [23]. 
The crystal data and structure refinement parameters are 
provided in Table 1 and the X-ray geometrical parameters 
(bond distance and angles) are provided in Table 2. 
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Table 2. Bond lengths for copper complex. 
Atom Atom Length (Å) (Exp.) Length (Å) (Theor.)   Atom Atom Length (Å) (Exp.) Length (Å) (Theor.) 
Cu1 O1 2.018(3) 2.010   C8 O3 1.224(5) 1.226 
Cu1 N2 1.942(4) 1.985   C8 O2 1.266(5) 1.307 
Cu1 N3 1.905(4) 1.925   N1 C7 1.314(5) 1.360 
Cu1 O2 2.048(3) 2.055   N1 C5 1.367(5) 1.392 
Cu1 O5 2.243(3) 2.391   C9 C10 1.363(6) 1.393 
O1 C14 1.267(5) 1.305   C14 C13 1.530(6) 1.530 
N2 C6 1.396(5) 1.394   C12 C11 1.369(6) 1.402 
N2 C7 1.313(5) 1.320   C12 C13 1.378(6) 1.402 
O4 C14 1.221(5) 1.226   C4 C5 1.400(6) 1.397 
N3 C9 1.334(5) 1.333   C6 C1 1.397(6) 1.400 
N3 C13 1.333(5) 1.332   C6 C5 1.386(6) 1.410 
C3 C4 1.345(7) 1.393   C1 C2 1.382(7) 1.392 
C3 C2 1.410(7) 1.413   C10 C11 1.381(6) 1.402 
C8 C9 1.514(6) 1.529          

 
Table 3. Bond angles for copper complex. 
Atom Atom Atom Angle (°) (Exp.) Angle (°) (Theor.)   Atom Atom Atom Angle (°) (Exp.) Angle (°) (Theor.) 
O1 Cu1 O2 159.60(12) 158.02   N3 C9 C10 120.1(4) 121.23 
O1 Cu1 O5 94.94(13) 94.91   C10 C9 C8 128.9(4) 129.36 
N2 Cu1 O1 100.75(13) 101.23   C8 O2 Cu1 114.2(3) 114.56 
N2 Cu1 O2 97.50(13) 96.58   O1 C14 C13 114.6(4) 114.92 
N2 Cu1 O5 94.62(15) 94.89   O4 C14 O1 125.8(4) 124.90 
N3 Cu1 O1 80.72(13) 81.00   O4 C14 C13 119.6(4) 119.63 
N3 Cu1 N2 170.16(16) 170.26   C11 C12 C13 118.2(4) 119.79 
N3 Cu1 O2 79.76(13) 79.11   C3 C4 C5 117.1(5) 117.94 
N3 Cu1 O5 94.95(14) 93.99   N2 C6 C1 131.1(4) 130.56 
O2 Cu1 O5 92.60(13) 92.79   C5 C6 N2 107.5(4) 107.90 
C14 O1 Cu1 115.1(3) 116.22   C5 C6 C1 121.4(4) 120.53 
C6 N2 Cu1 131.6(3) 131.63   C2 C1 C6 116.4(5) 114.33 
C7 N2 Cu1 121.2(3) 120.99   C9 C10 C11 118.3(4) 116.96 
C7 N2 C6 106.0(4) 105.53   C12 C11 C10 121.1(5) 120.79 
C9 N3 Cu1 119.2(3) 119.67   N2 C7 N1 112.0(4) 111.57 
C13 N3 Cu1 118.3(3) 119.00   N3 C13 C14 111.3(4) 110.99 
C13 N3 C9 122.6(4) 122.34   N3 C13 C12 119.7(4) 117.79 
C4 C3 C2 122.1(5) 122.12   C12 C13 C14 129.0(4) 130.23 
O3 C8 C9 119.1(4) 119.37   C1 C2 C3 121.5(5) 119.99 
O3 C8 O2 125.5(4) 126.33   N1 C5 C4 132.7(4) 133.63 
O2 C8 C9 115.4(4) 114.34   N1 C5 C6 105.8(4) 107.33 
C7 N1 C5 108.6(3) 107.57   C6 C5 C4 121.6(4) 123.63 
N3 C9 C8 110.9(4) 111.00            
 
2.5. Antibacterial activities 
 

The bacterial strains used in this investigation were E. coli 
(ATCC-25922) and S. aureus (ATCC-25923). Individual pure 
bacteria cultures were grown on nutrient agar medium at a 
concentration of 40 g/L. To sustain the bacterial cultures, they 
were subcultured on a regular basis using the same medium, 
then incubated at 37 °C for 24 hours before being stored at 4 °C 
until they were used in this experiment [30,31]. The agar well 
diffusion technique [30-34] was used to assess the antibacterial 
activity of the synthesized complex with minimal modifications 
[30]. Antimicrobial susceptibility was assessed using a medium 
made with agar (20 g/L) and Mueller Hinton (MH) broth (21 
g/L) in a 1 L conical flask using the agar well diffusion 
technique. After preparing the medium, it was autoclaved at 
120 °C for 20 minutes to sterilize it. A sterile cork borer was 
used to make a 6 mm hole, after which 100 µL of the solution 
(made by dissolving the complex in DMSO) were pipetted into 
triplicate wells at a concentration of 10 mg/mL. The width of 
the inhibition zone was measured in three different fixed 
directions and the mean value was obtained after incubation of 
the plates at 37 °C for 24-48 h. 
 
2.6. Molecular docking 

 
The prediction of interactions between a small molecule 

(ligand) and a target protein can be done computationally by 

using molecular docking. The interactions of a compound with 
a particular target of bacterial proteins, such as an enzyme or 
receptor crucial for bacterial growth or survival, could be 
usefully revealed by molecular coupling to predict antibacterial 
activity [35].  

Auto-Dock Vina software [36] was used for molecular 
docking studies. The RCSB PDB (https://www.rcsb.org) was 
used to obtain the X-ray crystallographic structure of the 
receptor protein, which was then used for molecular docking 
studies against the synthesized complex [37]. The receptor 
structure was described as rigid, the grid dimensions x, y and z 
ranged from 62, 100, 88 and 54, 68, 64 with 1 Å spacing for the 
proteins with PDB ID-2XCS and PDB ID-1D7U, respectively 
[38,39]. By removing water molecules and polar hydrogen, each 
protein of interest was prepared [37].  
 
2.7. Density functional theory studies 
 

Density functional theory (DFT) is an extremely successful 
approach for the description of ground state properties of 
metals, semiconductors, and insulators [40]. Here, the structure 
of the complex was fully optimized using the Gaussian 16 
program package [41] using the UB3LYP hybrid functional [42] 
at 6-31++G(d,p) [43] level of theory 6-31++G(d,p) [43] com-
bined with the LANL2DZ [44] basis set for a heavy element like 
Cu. EmpiricalDispersion = GD3 [45] and TightSCF [45] criteria 
were applied for a better result.  

https://www.rcsb.org/
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Figure 1. ORTEP representation of the asymmetric unit of the complex with the atom numbering scheme. All thermal ellipsoids are drawn at 50% probability 
level. 

 
Frequency analysis was carried out using the same 

functional and basis set to verify the nature of optimized 
molecule. No imaginary frequency was found, which signifies a 
stationary point of minimum and the success of geometry 
optimization [46]. 
 
2.8. Pharmacokinetic analysis 
 

The pharmacokinetic properties of a substance or 
compound, such as its absorption, distribution, metabolism, 
and excretion (ADME), must be evaluated prior to clinical and 
animal studies because they determine the potential of the 
substance as a drug and its activity within the body [47]. 
Additionally, the pharmacokinetic parameters provide 
important details on drug concentrations in various locations in 
the body over time [48]. For any chemical to be evaluated as a 
drug candidate, pharmacokinetic characteristics such as 
gastrointestinal absorption (GI), water soluble capacity (Log S), 
lipophilicity (Log Po/w), CYP1A2 inhibitor, and blood-brain 
barrier (BBB) are crucial [49]. Therefore, the SwissADME 
database (http://www.sib.swiss) was used to assess the 
pharmacokinetic characteristics of the complex [27]. 
 
3. Results and discussion 
 
3.1. Structural description 
 

Single crystal X-ray diffraction studies of the complex 
C14H11CuN3O5.H2O revealed that it crystallizes in monoclinic 
form with the space group P21/n. In Figure 1, it is evident that 
the asymmetric unit consists of a Cu(II) ion coordinated with 
one N atom of benzimidazole, one N atom of dipicolinic acid, 
two O atoms of dipicolinic acid, and one O atom of water 
molecule. The geometry of the complex is distorted square 
pyramidal with a Cu(II) ion, dipicolinic acid, and benzimidazole 
in almost a single plane, thereby forming the base, and one 
water molecule is out of the plane forming the apex of the 
square pyramidal geometry. The dipicolinate ligands are linked 
to a Cu(II) ion in a tridentate N,N,O chelating mode, forming two 
5-membered chelate rings and the benzimidazole moiety and 
water molecules behave as monodentate ligands, both 
occupying the remaining positions of a square pyramidal 
geometry. Both Cu-O bonds formed by the O atoms of the 
dipicolinic acid anion are almost of the same length (Cu1-O1 = 
2.018(3) Å and Cu1-O2 = 2.048(3)Å), whereas Cu-O bond 
formed by the O atom of water is much higher (Cu1-O5 = 
2.243(3) Å). As expected, the two Cu-N bonds (one formed 

using the N-atom of benzimidazole and the other formed using 
the N-atom of dipicolinic acid) are of different lengths (Cu1-N2 
= 1.942(4) Å and Cu1-N3 = 1.905(4) Å). There is a slight 
distortion in the bond angles surrounding the Cu(II) ion. This 
may be due to the steric hindrance of the dipicolinic acid anion 
and the benzimidazole moiety [50]. The geometrical para-
meters of the obtained complex were very close to those of the 
reported complex [23]. The bond parameters of the reported 
complex are as follows; Cu1-O1 = 2.001(3), Cu1-O2 = 2.052 (3), 
Cu1-O5 = 2.242(3), Cu1-N2 = 1.934(3) and Cu1-N3 = 1.898(3) 
Å. 
   
3.2. FT-IR spectroscopy 
 

The broad band observed at around 3444 cm-1 in the FT-IR 
spectrum of the complex is due to the OH stretching vibrations 
of the coordinated water molecules [51]. The peaks observed at 
3061 and 2925 cm-1 are due to aromatic C-H stretching 
vibration and C-H vibration, respectively [52]. The O-H rocking 
and wagging vibrations of the coordinated H2O molecules in the 
complex were assigned a peak of around 856 cm-1 [53]. A broad 
band around 471 cm-1 could be attributed to Cu-O stretching 
vibration [51,54]. Cu-N stretching vibrations were assigned to 
the peak at 447 cm-1, indicating that the N of imidazole and 2,6-
pyridine dicarboxylic acid coordinate with the Cu(II) ion 
[55,56]. The characteristic bands of the carboxylate group 
appear at 1362 cm-1, suggesting coordination of the O atom of 
the 2,6 pyridine dicarboxylic acid moiety with the Cu(II) ion 
[51,54]. 
 
3.3. Scanning electron microscope (SEM) analysis 
 

The FE-SEM image (Figure 2) of the complex shows the 
formation of large crystals of the complex, demonstrating its 
regular crystalline structure. The crystal grains are arranged in 
a unidirectional and regular pattern, as is seen in Figure 2. The 
crystal is arranged in a regular rod shape and has well-
characterized regular faces. 
 
3.4. Hirshfeld surface analysis 
 

The Hirshfeld surface analysis of the synthesized complex 
was performed and their associated two-dimensional 
fingerprint plots were used to predict possible intermolecular 
interactions. For mapping the Hirshfeld surface of a molecule, 
the descriptor dnorm was used, which includes two factors: (i) de, 
which  represents  the  distance of  any  surface point nearest to  

http://www.sib.swiss/
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Table 4. Lipinski’s properties and pharmacokinetic properties (ADME) of the title complex *. 
MW #RB #HBD #HBA Violation Log PO/W Log S GI BBB CYP1A2 TPSA  Bioavailability score 
382.82 1 3 6 0 -0.04 -3.97 High No Yes 94.61 0.55 
* MW: Molecular weight (g/mol), #RB: Rotatable bond, #HBD: Hydrogen bond donor, #HBA: Hydrogen bond acceptor, Log PO/W: Lipophilicity (Octane/water), 
Log S: Solubility, GI: Gastro intestinal absorption, BBB: Blood brain barrier, CYP1A2: TPSA: Topological polar surface area. 
 

 
 

Figure 2. FE-SEM images of the crystal. Inset: Rod-shaped crystals with well-characterized faces. 
 

   

(a) (b) (c) 
 

Figure 3. Molecular Hirshfeld surface: (a) dnorm; (b) shape index, (c) curvedness. 
 
the internal atoms, and (ii) di, which represents the distance of 
any surface point nearest to the exterior atoms [57]. The 
parameter dnorm is calculated by the mathematical expression 
given below; 
 
dnorm = (di – rivdw)/ rivdw + (de – revdw)/ revdw  (1) 

 
where rivdw and rivdw represent the van der Waals radii of atoms. 
On the basis of the types of intermolecular contacts, the 
parameter dnorm may have a negative or positive value. The 
intermolecular contacts are shorter than the van der Waals 
separation if the value is negative, and the contacts are larger 
than the van der Waals separation if the value is positive [57]. 

The dnorm shows a surface with bright red, white, and blue 
spots for the shortest contact, contact around the van der Waals 
separation, and devoid of close contacts, which appear as the 
primary interaction in the complex, respectively. The Hirshfeld 
surface is unique in crystals with spherical atomic electron 
densities and provides insight into the intermolecular 
interactions that occur in the studied molecular crystals. The 
surfaces have been made transparent for better visualization of 
the molecular moiety around which they are calculated. Figure 
3 shows the molecular Hirshfeld surface for Cu(II); dnorm, 
curvedness and shape index for the Cu(II) complex, which is 
mapped over the dnorm range -0.6670 to 1.3215, curvedness 
range -4.0000 to 0.4000 and shape index ranges -1.0000 to 
1.0000, respectively. Compared to the van der Waals sum of the 
two elements that share this interaction, the intense red spots 
in the crystal dnorm maps indicate the presence of significantly 
short intermolecular contacts. In the corresponding fingerprint 
plots (shown in Figure 4), the red spots appeared as sharp 
spikes and were found to be associated with the polar O···H 
hydrogen bonding interactions. The other less important 
intermolecular interactions appeared in the dnorm map as faded 

red spots, and the broad peaks in the fingerprint plots are 
attributed to the hydrophobic C···H and H···H interactions. 
Figure 4 shows a graphical representation of the complete 
quantitative determination of all possible intermolecular 
contacts. It is evident that the O···H (30.6%), H···H (36.4%), and 
C···H (12.6%) contacts contributed the most to the 
intermolecular interactions, indicating that these contacts are 
important in the molecular packing of the reported complex 
[58]. 
 
3.5. Pharmacokinetic properties 

 
An in silico ADME prediction study has been performed on 

the copper complex. An important pharmacokinetic parameter 
for any compound is its bioavailability score, which was 
calculated using Swiss ADME software [27] and evaluated 
several factors such as molecular weight, hydrogen donor and 
acceptors, as well as rotatable bonds, lipophilicity, 
gastrointestinal absorption, water soluble capacity (Log S), 
CYP1A2 inhibitor, blood-brain barrier (BBB) [33]. It is evident 
from Table 4 that the complex with a bioavailability score of 
55% has a consensus lipophilicity value (Log PO/W) of -0.04. 
There are no apparent violations of the Lipinski rule in the title 
complex, indicating that this compound has the potential to be 
exploited as a candidate medicine [47]. 
 
3.6. Molecular docking studies 
 

The Auto Dock Vina program was used to investigate how 
the copper complex interacted with different protein receptors 
[36]. The crystal structures of the required target proteins were 
retrieved from the protein data bank (PDB IDS-2XCS and 1D7U) 
in order to evaluate the antimicrobial activity [38,39].  
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Table 5. Binding affinity of the complex with different proteins. 
PDB ID Binding energy 

(Kcal/mol) 
Amino acid residues  Molecular surface view and the molecular interactions 

2XCS  -7.1 PHE1480, PRO1102,  
ASP1096, ASP1105, 
ARG1127, PRO1060, 
LYS1130, THR1129 

  
1D7U  -5.2 ASP319, ARG323, 

ARG316, LEU315, 
ASP89, VAL67, 
SER66  

  
  

  
  

  
 

Figure 4. 2D Fingerprint plots of the complex. 
 

Dialkylglycine decarboxylase (PDB ID: 1D7U) is one of the 
proteins that is frequently targeted by bacteria. Furthermore, a 
crystal structure of GSK299423 and the DNA-bound S. aureus 
gyrase complex were used [38,39]. The docking score for 
dialkylglycine decarboxylase (PDB identification 1D7U) was 
found to be -5.2 kcal/mol, while the docking score for the S. 
aureus gyrase complex with DNA (PDB identifier 2XCS) was 
determined to be -7.1 kcal/mol (Table 5). The results obtained 
indicate that the synthesized Cu(II) has a strong interaction 
with bacterial proteins. 
  
3.7. Antibacterial activity 
 

The disc diffusion method was used to examine the complex 
under study for its in vitro biological screening effects on a 
variety of bacterial species. In terms of antibacterial species, the 
title complex has good activity. The complex shows anti-
bacterial activity against the Gram-negative bacterial isolate E. 

coli with an inhibition zone diameter of 11 mm and the Gram-
positive bacterial isolate S. aureus with an inhibition zone 
diameter of 18 mm. The MIC values for the complex were 
checked and it was found that it shows MIC 3 mg/mL in the case 
of S. aureus and 2 mg/mL in the case of E. coli. 
 
3.8. Computational studies 
 

The optimized geometry of the Cu(II) complex is shown in 
Figure 5. The penta-coordinated Cu(II) complex adopts a 
square pyramidal structure, which is consistent with the 
structure obtained from a single-crystal X-ray diffraction (XRD) 
study.  

To obtain more information about the molecular structure, 
excitation properties, and electron transport in the studied 
system, frontier molecular orbitals (HOMO and LUMO) analysis 
has been carried out [59,60].  
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Table 6. The HOMO-LUMO orbital energies, ∆E, ionisation potential (IP), electron affinity (EA), chemical potential (μ), global hardness (η), and global 
electrophillicity power (ω) at the UB3LYP/6-31++G(d,p) level of theory. 
Parameters Energy (eV) 
EHOMO -0.24 eV 
ELUMO -0.08 eV 
∆E 0.17 eV 
Ionization potential (IP) -0.24 eV 
Electron affinity (EA) 0.08 eV 
Chemical potential (μ) -0.16 eV 
Global hardness (ή) 0.08 eV 
Electrophilicity power (ω) 0.16 eV 
 
Table 7. Mulliken atomic charges of complex. 
Atoms Atomic charges Atoms Atomic charge 
Cu1 -0.077022 H18 0.074810 
O2 -0.534952 C19 -0.160532 
H3 0.396600 H20 0.085693 
H4 0.399794 C21 0.263952 
O5 -0.367602 C22 0.263961 
O6 -0.490847 C23 0.238960 
O7 -0.488507 H24 0.150328 
O8 -0.330866 C25 0.409527 
N9 0.114388 C26 -0.208152 
N10 -0.013600 H27 0.048559 
N11 -0.277779 C28 -0.146566 
H12 0.277362 H29 0.046941 
C13 0.415130 C30 -0.258159 
C14 0.224906 H31 0.065073 
C15 -0.106678 C32 -0.095730 
H16 0.085934 H33 0.103078 
C17 -0.122295 C34 0.014290 
 

 
 

Figure 5. Optimized geometry of the copper complex. 

Frontier molecular orbital theory (FMO) can also predict 
the optical properties and chemical stability of the complex 
[61]. The energy of the HOMO and LUMO orbitals of the studied 
system is found to be -0.24 and -0.08 eV, respectively (Table 6). 
The negative energy values of the HOMO and LUMO orbitals are 
indicators of the stability of the complex [62]. On the other 
hand, when the effect of optical properties is studied, a critical 
analysis of the energy difference in the HOMO-LUMO gap (∆E = 
ELUMO-EHOMO) is an important parameter and for the complex 
studied it was found to be 0.17 eV (Figure 6). The smaller 
energy gap (E) between the highest occupied molecular orbital 
(HOMO) and the lowest unoccupied molecular orbital (LUMO) 
influences the molecules to absorb light in the region of higher 
wavelength, which is important for optoelectronic applications 
[63]. In addition, the HOMO-LUMO energy gap can predict the 
chemical hardness and softness of a molecule [64]. A low ∆E 
value signifies a chemically soft molecule with less stability, 
while a high ∆E value signifies a chemically hard molecule with 
high stability [65]. Polarizability increases with the increase of 
the softness in a molecule which facilitates to enlarge the Non 
linear optical (NLO) response [66]. 

The ionization potential (IP) and electron affinity (EA) of 
the organic molecule are crucial parameters that give 
information about the charge injection and charge transport 
characteristics of a molecule [61]. High EA of the conjugated 
molecule is used to progress the electron injection/transport 

and low IP of the conjugated molecule results in better hole 
injection/transport, which is the main parameter for the 
achievement of an organic light-emitting diode (OLED) [67]. 
The HOMO-LUMO orbital energies are directly related to the 
ionization potential and electron affinity of the system. To 
better understand, we can calculate various properties such as 
the chemical potential (μ), global hardness (η), and global 
electrophillicity power (ω) from the value of ∆E based on DFT 
to understand the structure and reactivity of the molecule by 
the following relations [62]:  
 
𝐼𝐼𝐼𝐼 = 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻     (2) 
 
𝐸𝐸𝐸𝐸 = −𝐸𝐸𝐿𝐿𝐿𝐿𝐻𝐻𝐻𝐻      (3) 
 

𝜇𝜇 = 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻+𝐸𝐸𝐿𝐿𝐿𝐿𝐻𝐻𝐻𝐻
2

     (4) 
 
η = −𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻+𝐸𝐸𝐿𝐿𝐿𝐿𝐻𝐻𝐻𝐻

2
     (5) 

 

ω= 𝜇𝜇2

2ή
      (6) 

 
From Table 7, it is evident that the Mulliken charges in the 

neighborhood of C13, C14, C21, C22, C23, C25, and C34 are 
more positive and thus this positive value indicates the 
direction of delocalization. 
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HOMO LUMO 
 

Figure 6. Frontier molecular orbitals of the complex studied in the gas phase at the UB3LYP/6-31++G(d,p) level of theory. 
 

 
Figure 7. Molecular electrostatic potential surface diagram of the complex. 

 
The electrostatic potential is typically visualized as a 

mapped surface. An electron density isosurface is colored 
according to the value of the electrostatic potential at each point 
on it [68]. Regions of large positive and negative electrostatic 
potential conventionally appear red and blue, respectively. 
While the positive (blue) portion of Molecular Electrostatic 
Potential (MEP) corresponds to nucleophilic reactivity, the 
negative (red and yellow) region is associated with electro-
philic reactivity. As can be seen in Figure 7, the carboxylic group 
oxygen atom is the most reactive component of the molecule. 
The increased reactivity of this group may be due to its more 
electronegative character [62]. 

 
4. Conclusions 
 

In this study, the antibacterial activities of the copper 
complex were explored using an extensive approach that 
included molecular docking, absorption, distribution, meta-
bolism, and excretion (ADME) analysis, and density functional 
theory (DFT) investigations. From molecular docking studies, 
dialylglycine decarboxylase was discovered to have a docking 
score of -5.2 kcal/mol (PDB: 1D7U), whereas the S. aureus 
gyrase complex with DNA (PDB: 2XCS) had a docking score of -
7.1 kcal/mol. The results show that the Cu(II) complex interacts 
strongly with bacterial proteins. From ADME studies, it was 
evident that the compound has the potential to be used as a 
candidate drug because there are no apparent violations of the 
Lipinski rule in the title complex. The HOMO-LUMO gap (∆E = 
ELUMO-EHOMO) measured using DFT calculations was found to be 
0.17 eV. From antibacterial studies, the MIC values were found 
to be 3 mg/mL in the case of Staphylococcus sp. and 2 mg/mL in 
the case of E. coli. The findings of these investigations provided 
important information about the potential of the metal complex 
to be used as an antibacterial agent. 
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