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Using energy operators RC1-nRD1-m, RC1-nr12-m, and r12-nr13-m with small (n, m) values is 
fundamental in electronic structure calculations. Analytical integrations of the cases (n, m) 
= (1, 0) and (0, 1) are based on the Laplace transformation with the integrand exp(-a2t2), the 
other cases are based on the Laplace transformation with the integrand exp(-a2t) and the 
two-dimensional version of the Boys function. These analytic expressions, with Gaussian 
function integrands, are useful for manipulation with higher moments of interelectronic 
distances, for example, in correlation calculations. The equations derived help to evaluate 
the one-, two-, and three-electron Coulomb integrals, ∫ρ(1)RC1-nRD1-mdr1, ∫ρ(1)ρ(2)RC1-n                

r12-mdr1dr2, and ∫ρ(1)ρ(2)ρ(3)r12-nr13-mdr1dr2dr3, wherein ρ(i) is the one-electron density 
describing the electron clouds in molecules, solids, or any media or ensemble of materials. 
Analytical solutions to integrals are more useful than numeric solutions; however, the 
former is not available in many cases. We evaluate these integrals numerically, even more 
so, the ∫f(ρ(1))dr1 to ∫f(ρ(1),ρ(2),ρ(3))dr1dr2dr3 with the analytical function f. For this task, 
the commonly used density functional theory numerical integration scheme has been 
elaborated to 6 and 9 dimensions via Descartes product. More importantly, this numerical 
integration scheme works not only for Gaussian type but also for Slaterian types. Analogy is 
commented on in terms of the powerful empirical correction between quantum potential 
energy correction and the empirically corrected Newton’s universal law of gravity in the 
explanation of dark matter and energy, as well as its relation to Hartree-Fock and Kohn-
Sham formalisms.  
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1. Introduction 
 

The goal of this work is to discuss some extensions of 
Coulomb integrals (with respect to the integrand and the 
evaluation) for wider applicability in quantum chemical calcu-
lations. Integrations in solving the non-relativistic Schrödinger 
equation are a basic and inevitable step analytically, and if not 
applicable, numerically. Even in basis Hartree-Fock (HF) and 
post-HF theories with very large basis sets, sometimes the 
numerical integration competes with the large number of steps 
in analytical integration. More importantly, there are funda-
mental and numerical difficulties in density functional theory 
(DFT) to quantitatively describe the effect of corre-lations. The 
equations are non-linear integro-differential equations, and 
finding a solution requires numerical methods. Furthermore, 
for example, in explicitly correlated electronic structure theory, 
the dependence of the wave function on the interelectronic 
distance rij is built via the correlation factor f(rij). In its 
development, the so-called R12 theory is supposed simply that 
f(r12) = r12. In the last decade, the use of Slater-type geminal 
f(r12) = -exp(-a r12)/a represents the main stream. In the 
products of occupied HF orbitals as f(r12)φiφj, the necessity to 
calculate the three- and four-electron integrals has arisen 
resulting from the Coulomb and exchange operators. 

The Coulomb interaction between two charges in classical 
physics is Q1Q2r12-n, one of the most important fundamental 
interactions in nature. The power 'n' has the rigorous value 2 
that describes the force, while, as a consequence, the value n = 
1 describes the energy. For electron-electron interactions, the 
exact theory says that the Coulomb interaction energy is 
represented by the two-electron energy operator r12−1. The 
values (n, m) = (1, 0) and (0, 1) provide the leading potential 
energy terms, i.e., the nuclear-electron attraction integral, 
∫ρ(1)RC1-1dr1, for the exact value and the electron-electron 
repulsion integral, ½∫ρ(1)ρ(2)r12-1dr1dr2, for approximate 
value in total energy (in addition to the kinetic and nuclear-
nuclear repulsion energies) in DFT [1-4], and analogously, 
which come before, with single Slater determinant(s) in 
Hartree-Fock self-consistent field (HF-SCF) and Configuration 
interactions (CI) [5] theory. Clearly, these two are called 
Coulomb integrals. The other (n, m) values are useful as 
correction values, e.g., in correlation calculations (CC).  

Using the primitive Gaussian type atomic orbital (GTO) 
functions from  
 
GAi(a, nx, ny, nz) ≡ (xi-RAx)nx (yi-RAy)ny (zi-RAz)nz exp(-a|ri-RA|2)            (1) 
n = 2 is called GTO, n = 1 is called Slater type atomic orbital 
(STO)       
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with a > 0 and nx, ny, nz ≥ 0 benefits the important property 
such as GAiGBi is also the (a sum of) GTO, even more, its 
derivatives also preserve the form as a sum of GTO. We use the 
shorthand notation for the energy operator (or distance 
operator, or weights) mostly in the discussion of numerical 
integration as 
 
W(1)≡ RC1-n or RC1-nRD1-m, W(1,2)≡ RC1-nr12-m or r12-m,  

W(1,2,3)≡ r12-nr13-m or RC1-nr23-n, etc.  (2) 
 

Notice that Equation 2 is (n,m) dependent but not indicated, 
but must always be kept in mind. The Coulomb interaction 
energy for molecular systems is finally expressed with the 
linear combination (LC) of ∫GA1RC1-1dr1 (an ∫GA1W(1)dr1 type) or 
∫GA1GB2r12-2dr1dr2 (an ∫GA1GB2W(1,2)dr1dr2 type). Their 
analytical evaluation [1,2,5] is fundamental in computation 
chemistry. In the approximate solution of the electronic 
Schrödinger equation, such as HF-SCF and DFT, etc., CC is 
necessary, as are many other devices; for example, the integrals, 
∫GA1 GB2 GC3r12-n r13-mdr1dr2dr3 (an ∫GA1 GB2 GC3 W(1,2,3) 
dr1dr2dr3 type), come up. Only approximate numerical 
expressions are available to evaluate the latter; see, e.g., 
Equation 52 in reference [6] as <ijm|r12-1r13-1|kml> ≈ ∑p <ij|r12-

1|pm><pm|r12-1|kl>, where as an alternative, the bracket 
notation [1,5] is used. If derivatives appear, such as 
∫(∂ρ(1)/∂x1)pRC1-ndr1, ∫(∂ρ(1)/∂x1)pρ(2)q r12-ndr1dr2, etc., and ρ 
is given as the linear combination (LC) of GTO [1,2,7], analytical 
evaluation is also available in these cases.  

While the products and derivatives of GTO functions are of 
GTO type and analytical (and numerical) integration is 
available, the products and derivatives of STO functions are not 
of STO type and only numerical integration is available. In this 
relation, we mention the widely used devices, such as STO 
functions (powerful in Computational quantum chemistry 
(CQC)) that are expanded to LC of 3, 6, etc. GTO functions (less 
powerful than STO in CQC). Besides the analytical integration of 
cases in the main title, for their numerical integration, we 
expand the powerful numerical integration scheme for 3 
dimensions [8-11] widely used in DFT for CC to 6 and 9 
dimensions with the device of the Descartes product. Further-
more, integrals such as ∫ρ(1)ρ(2)ρ(3)ρ(4)r12-nr34-mdr1dr2dr3dr4 
break up into products of simpler elements such as ∫ρ(1)ρ(2)r12-

ndr1dr2 and ∫ρ(3)ρ(4)r34-mdr3dr4, etc., and fall into the cases 
discussed. Last, we mention that, in addition to the ones in 
Equation 2, W = a/r12 with the real value “a”, as a scaling, is also 
a choice. The value a = 0 removes the electron-electron 
potential, and tuning “a” from unity can effectively account for 
the correlation energy in HF-SCF calculations, as detailed in 
references [12,13]. Furthermore, the analytical integral 
evaluation does not change with this “a” in this way, for 
example, in HF-SCF or DFT. Altogether, calculating these 
integrals in the main title analytically or numerically provides 
important energy (main and correction) values in CQC (see R12 
theory also).  

Important is that, if, e.g., the simple ∫GA1W(1)dr1 comes up 
among the tasks of integrations (i.e., not a general ∫f(ρ)W 
wherein f changes this situation), only n, m < 3 makes sense in 
the title; otherwise, this integral is infinite. It originates from 
(switching to spherical coordinates using dxdydz= 
r2sin(θ)drdθdϕ yielding) ∫R3 rk exp(-a rp)dr = 4π∫(0,∞)rk+2exp(-a 
rp)dr = finite for p= 1 or 2 if k > -3, etc.  
 
2. Analytical evaluations for values n, m = 0, 1, 2 
 

Using Laplace transformations RC1-1 = π−1/2∫(-∞,∞) exp(-
RC12t2)dt and RC1-2 = ∫(-∞,0) exp(RC12t)dt = ∫(0,∞) exp(-RC12t)dt, the 
one-electron spherical Coulomb integral, VP,C(n)≡ ∫(R3) exp(-p 
RP12) RC1-n dr1, with GP1(p,0,0,0) can be evaluated [14,15]. The 

case n = 1 is widely used, n = 2 with Boys function and v≡ p RCP2 
is 
 
VP,C(2) = (2π3/2/p1/2) ∫(0,1) exp(p RCP2 (w2-1))dw =  

(2π3/2/p1/2)e-vF0(-v)   (3)  
 

For nonspherical GP1(p, nx, ny, nz) in one-electron Coulomb 
integral with energy operator RC1-2, no further trick is needed; 
the only formula necessary is how to shift the center of the 
polynomials, see Appendices 1-4 in reference [14]. With the 
notations fullVP,C(n) and VP,C(n), the former stands for any 
(spherical and non-spherical) nx+ny+nz ≥ 0 quantum number, 
while the latter denotes the simplest spherical (1s-like) case, nx 
= ny = nz = 0. In more detail, it is the integral fullVP,C(2)≡ 
∫(R3)GP1(p,nx1,ny1,nz1) RC1-2 dr1. For n = 2, see references 
[14,15]. 

For a one-electron spherical Coulomb integral with the 
energy operator RC1-nRD1-m with n, m = 1, 2 one can also evaluate 
the VP,CD(n,m)≡ ∫(R3)exp(-pRP12)RC1-nRD1-mdr1. Using the same tools 
as above, the algorithm is straightforward. For example, with 
(n,m) = (1,2) and using g≡ p+t2+u and f≡ p t2 RPC2 + p u RPD2 + u 
t2 RCD2 the 
 
VP,CD(1,2) = π∫t=(-∞,∞)∫u=(0,∞)g-3/2exp(-f/g) du dt  (4) 
 

The two- and three-electron spherical Coulomb integrals 
are as follows: The two-electron spherical Coulomb integral 
with r12-2, the (n,m) = (2,0) and (0,2) cases are VPQ(n)≡ ∫(R6) exp(-
p RP12) exp(-q RQ22) r12-n dr1dr2. The case n = 1 is widely used 
[15] and the case n = 2 is in Equations 5 and 6, wherein v≡ 
pqRPQ2/(p+q): 
  
VP,C(2) = ∫(R3) exp(-p RP12)r12-2 dr1 =  

(2π3/2/p1/2) ∫(0,1) exp(p RP22 (w2-1))dw   (5) 
 
VPQ(2) = 2π3(pq)-1/2(p+q)-1∫(0,1) exp(v(w2-1))dw = 

 (2π3(pq)-1/2(p+q)-1)e-vF0(-v)    (6) 
 

The two-electron spherical Coulomb integral with mixed 
term RC1-nr12-m and n = m = 1 is 
  
∫(R6)exp(-pRP12)exp(-qRQ22)RC1-1r12-1dr1dr2= 

(2π2/q)∫u=(0,1)∫t=(-∞,∞) g-3/2exp(-f/g) dtdu  (7) 
 

In Equation 7, f≡ pqRPQ2u2+pRPC2t2+qRQC2u2t2 and g≡ 
p+qu2+t2. Alternatively, the RW= (pRP+qu2RQ)/(p+qu2) yields  
 
∫(R6)exp(-pRP12)exp(-qRQ22)RC1-1r12-1dr1dr2= 

(4π2/q)∫(0,1)F0(gRWC2)g-1exp(-f/g)du   (8) 
 

In Equation 8, f≡ pqRPQ2u2 and g≡ p+qu2, where RWC depends 
on u as gRWC2= (p+qu2)|RW–RC|2= |pRP+qu2RQ –gRC|2. Unlike 
Equation 8, Equation 7 calls for the two-dimensional version of 
the Boys function; see Appendix 1. The algorithm is straight-
forward for other values of (n,m).  

The three-electron spherical Coulomb integral with r12-nr13-

m is VPQS(n,m)≡ ∫(R9) exp(-p RP12) exp(-q RQ22) exp(-s RS32) r12-nr13-m 
dr1dr2dr3. For this, Equation 5 provides the key substitutions to 
integrate with r2 and r3. For example, for n = m = 1, 
 
VQ(n=1) = ∫(R3)exp(-qRQ22)r12-1dr2 = (2π/q)∫(0,1) exp(-qRQ12 u2)du= 

 (2π/q)F0(qRQ12)     (9) 
 
VS(m=1) = ∫(R3)exp(-sRS32)r13-1dr3 = (2π/s)∫(0,1)exp(-sRS12 t2)dt= 

 (2π/s)F0(sRS12)                      (10) 
 



488 Sandor Kristyan / European Journal of Chemistry 14 (4) (2023) 486-493 
 

 
2023 – European Journal of Chemistry – CC BY NC – DOI: 10.5155/eurjchem.14.4.486-493.2480 

Using the same tools again as above, with f≡ 
pqRPQ2u2+psRPS2t2+qsRQS2u2t2 and g≡ p+qu2+st2, Equations 9 
and 10 yield 
 
VPQS(1,1)= (4π7/2/(qs))∫(0,1)∫(0,1) g-3/2exp(-f/g)du dt                   (11) 
 

Integration in Equation 11 can be done numerically, which 
is still more stable and reliable than equation 52 in the 
reference [6]. (The latter is basis-set dependent and much more 
difficult.) For n and/or m = 2 cases, Equation 5 must be applied 
analogously in the evaluation, and the algorithm is 
straightforward again.  

Equations 9 and 10 were applied to Equation 11 that yields 
a two-dimensional integral on the unit square. Another way is 
to use Equations 8-10 which require a one-dimensional integral 
on a unit segment only, and with RV≡ (pRP+ qu2RQ)/(p+ qu2) the 
  
VPQS(1,1)= (4π7/2/(qs)) ∫(0,1) h(u) g-1exp(-f/g) du                   (12) 
 

In Equation 12, h(u)≡ ∫(0,c)exp(-g s RVS2 w2)dw, c≡ (g+s)-1/2, 
f≡ pqRPQ2u2, and g≡ p+qu2. Equations 11 and 12 yield the same 
value for VPQS(1,1). The h(u) in Equation 12 is the prestage of the 
Boys function F0. Again, Equation 12 is a two-dimensional 
version of the Boys function, where a one-dimensional Boys 
function is in the integrand.  

Only these small, although useful, integer n and m values 
are known for analytical evaluation; for more flexible real 
values, numerical integration is necessary, as introduced in the 
next chapter.  
 
3. Numerical evaluations for real n, m values 
 

If beside or instead of the GTO, the STO is also used and/or 
non-integer or higher-value integer powers come up in 
electron-electron or electron-nuclear distances; analytic 
evaluations are not known and numerical integration is 
necessary. The numerical integration scheme introduced is 
practically the same for integer, non-integer, positive, or 
negative, i.e., real (n, m), as well as for the use of GTO or STO. 
We tested the numerical integration scheme for n, m = 0, 1, 2, 
and GTO, where analytical integration is available for 
comparison, but the scheme works for all cases mentioned.  

The extension of the known DFT numerical integration 
scheme from 3 to 6 and 9 dimensions follows. This numerical 
integration scheme comes from Becke’s method for radial 
integration [9] and Lebedev’s method for spherical integration 
[10,11], as well as the concept of Voronoi polygons (that is, 
geometrically atomic partition of the molecular frame). For a 
one-electron density with the shape of the LC of GTO or STO in 
Equation 1, this scheme falls into the simple sum. 
 
∫f(ρ(1))dr1 ≈ ∑k=1,…,L ck f(ρ(qk))                     (13) 
 

Mathematically, we are interested in smooth (differen-
tiable) functions f and ρ, as well as ρ, which is peaking in the 
nucleus. Equation 13 works with special rigorous weights {ck} 
and coordinates {qk} in 3 dimensions [9-11], estimating the 
integral accurately. Typical choices for L = LrLs include Lr = 20, 
..., 200 radial points (Chebyshev) and Ls = 20, 86, 302 spherical 
points (Lebedev). Equation 13 is widely tested in CC via DFT in 
CQC. We mention that the Voronoi participation of atoms in 
molecular frames provides another definition of partial charges 
[7] using numerical integration in Equation 13.  

The f in Equation 13 are special functions [16] for CC in 
current DFT methods, typically nonlinear in ρ, so analytical 
integration is generally not available. The main idea is the 
generalization [17] of Equation 13 as  
 

∫f(ρ(1),ρ(2),ρ(3))dr1dr2dr3 ≈ ∑A,B,C cAcBcC f(ρ(qA),ρ(qB),ρ(qC)) 
with f≡ ρ(1)ρ(2)ρ(3)W(1,2,3)                     (14) 
  

The f in Equation 14 is the only a particular case of CC, see 
Appendix 2. If W = W(1)W(2)W(3), e.g., W = RD1-3RE24 or the 
simplest W = 1, etc., that is, no coupling as W = r12-n for example, 
Equation 14 reduces to the product of three in Equation 13. 
Otherwise, Equation 14 is an effective extension of Equation 13 
from 3 to 9 dimensions. The extension to the 6 dimension case, 
∫f(ρ(1)ρ(2))dr1dr2, is obviously a simple algebraic reduction of 
Equation 14 to the analogous expression with the sum ∑A,B. 
Importantly, the set {ck,qk} in Equation 14 is exactly the same 
kind/set as in Equation 13, see a simple restriction below. 
Simply put, A, B, and C run for the same 1, 2, …, L points, so 
Equation 14 contains L2 terms for the case f(ρ(1)ρ(2)) or L3 
terms for the case f(ρ(1)ρ(2)ρ(3)) in specific calculations. 
Important is to choose (slightly) different point sets {ck,qk} 
among the two (i = 1, 2) as well as among the three (i = 1, 2, 3) 
variables ri (via Lr and Ls), as detailed in the reference [17]. The 
latter technically avoids singularities from reciprocal values, 
e.g., calculating a term r13-2 from the same upcoming 
coordinates, e.g., from q11∈{qA} and q11∈{qC}.  

An improvement in accuracy is as follows: Equation 14 with 
the specific f in more detail, is 
 
∫ρ(1)ρ(2)ρ(3)W(1,2,3)dr1dr2dr3 ≈  

∑A,B,C cAcBcC ρ(qA)ρ(qB)ρ(qC) W(qA,qB,qC)                       (15) 
 

For example, if W = r12-1 r13-2 in Equation 2, then W = |qA-qB|-

1|qA-qC|-2. Normalizing to the case W = 1 is possible to improve 
the accuracy. If W = 1, Equation 15 reduces to N3= (∫ρ(1)dr1)3= 
∫ρ(1)ρ(2(ρ(3)dr1dr2dr3 ≈ ∑A,B,C cAcBcC ρ(qA)ρ(qB)ρ(qC)= (∑A cA 
ρ(qA))3 if the same mesh is used. Dividing these two equations 
yields  
  
∫ρ(1)ρ(2)ρ(3)W(1,2,3)dr1dr2dr3 ≈  

[∫ρ(1)dr1/∑AcAρ(qA)]3∑A,B,CcAcBcCρ(qA)ρ(qB)ρ(qC)W(qA,qB,qC) 
                       (16) 
 

For the left side, the ∫ρ(1)dr1 can be evaluated analytically 
in practice because it is the LC of GTO in Equation 1. One must 
keep in mind that Equation 16 supposes that the same mesh is 
used for all three variables. If three different meshes are chosen 
(see above) and, even more, three different densities 
(distinguished by indexes α, β, γ as in the test below), the factor 
is  
 
[∫ρα(1)dr1∫ρβ(1)dr1∫ργ(1)dr1/(∑AcAρα(qA)∑BcBρβ(qB)∑CcCργ(qC))] 
                       (17) 
 

In Equation 17, the indexes A, B, and C represent the three 
(generally different) meshes for variables r1, r2, and r3, and 
again, the particular normalization (e.g., spin density) makes 
the nominator simpler. The reduction of 9 dimensions 
(Equations 16 and 17) to 3 dimensions (i.e., to ∫ρ(1)W(1)dr1) 
and 6 dimensions (i.e., to ∫ρ(1)ρ(2)W(1,2)dr1dr2) is straight-
forward. In the numerical integration tests below, we use the 
not-normalized ρ(i) = GAi(a,0,0,0) mostly. If the integration 
device in Equation 13 is 100% accurate, the factor is the unit in 
Equation 17, regardless of whether the ρ(1) is normalized (e.g., 
to N) or not. Jumping from 3 (Equation 13) to 6 and 9 
dimensions (Equations 14-17) increases the computation time 
as L vs. L2 and L vs. L3, respectively. Equations 14-17 are 
mathematically the Descartes product of the scheme for 3 
dimensions in Equation 13. 

We provide brief and powerful tests for the numerical 
integration scheme for 6 and 9 dimensions in Equations 14-17.  
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Table 1. Error in numerical integrations (Equations 13-17) in comparison to analytical integrations (Equations 3-12) demonstrated.  
W in Equation 2 Type in Equation 1 Lr (Radial points) Equations used Error in numerical integration % 
1 GTO and STO  Low Lr vs. high Lr  Equations 15-17  10-4 vs. 10-9 
RQ1-1 GTO High Lr,  Equation 15 vs. Equations 16-17  10-2 - 10-8 vs. 10-2 - 10-10 
RQ1-2 GTO Low and high Lr Equation 15 and Equations 16-17 0.5 - 0.0001  
r12-1 GTO Low and high Lr Equation 15 and Equations 16-17 4 - 10-9  
r12-2 GTO  Low and high Lr Equation 15 and Equations 16-17 5 - 10-6  
RS1-1r12-1 GTO Low and high Lr Equation 15 and Equations 16-17 5 - 0.001 
r12-1r13-1 GTO Low Lr Equation 15 and Equations 16-17 1 - 10-5 

 
The numerical integration scheme for 3 dimensions in 

Equation 13 is widely used and tested for integrations in DFT 
and CC; see the textbook properties in Appendix 2 in this 
respect. When f(ρ(1)) is the LC of the primitive GTO in Equation 
13 and an analytical integral is available, the numerical 
integration follows it to many decimal digits. However, when 
f(ρ(1)) is a non-linear function of ρ and the analytical 
integration is not available (and the analytical integration of 
GTO loses its relevance in this situation), Equation 13 still 
works, as experienced by reasonable results in CQC for CC. Our 
hypothesis is the same for Equations 14-17 with a more general 
f, even though we have tested it for particular cases of f only in 
Equations 14-17. Another benefit of numerical integration in 
Equations 15-17 is that it works not only for GTO but also for 
STO (of which analytical evaluation is far more difficult if it 
exists). Furthermore, it works for any positive or negative real 
value of n and m in Equation 2 with the same computational 
costs. For much larger than |n|, |m| ∈ [0, 4] values, the radial 
and spherical schemes reported in references [9-11] are not 
high-level enough, but their extension is straightforward.  

Furthermore, with Equations 15-17, all HF-SCF or DFT 
integrals can be evaluated numerically for both STO and GTO, 
while today only GTO is used for analytical integration during 
HF-SCF (for all) or DFT (all, except the CC part). The advantage 
of STO (which has the form of exact atomic wave functions) to 
GTO is that much fewer basis functions are necessary because 
GTO is based on the approximation exp(-p|r1-RP|) ≈ 
∑iciGPi(ai,0,0,0); see the idea of STO-3G, etc. basis sets [18] in HF-
SCF or DFT routines, for example. For this reason, using a 
higher-level GTO basis, the number of analytical operations is 
sometimes about the same or larger than the numerical 
operations via the mesh points in Equations 13-17.  

In the test below, we keep in mind the values that are 
important in practice: We have chosen the magnitude of the 
GTO exponents from the STO-3G basis set [17], that is, for 
analytical Equations 3-12 we used the values RQ = (d, 0, 0) and 
RS = (0, d, 0) with d = 0, 2, 8, 20, and p, q, s = 0.3, 1, 3, 15, 70 for 
GTO and p, q = 0.3, 1, 3, 6 for STO, as well as GAi(p or q, 0, 0, 0) 
was used from Equation 1. Additionally, we have compared the 
numerical Equation 15 with the improved numerical Equations 
16 and 17 using Lr = {20, 22, 24} (low), {50, 52, 54}, and {100, 
102} (high) values for the mesh points in the integration for 
dr1dr2dr3 and dr1dr2 together with Equation 2. The slightly 
different Lr values in the set (containing 3, 3, and 2 values, 
respectively, e.g., 100 vs. 102) were used to avoid singularity by 
r12-n. The % error was defined as 100(1-(numerical/ 
analytical)). The test values obtained are summarized in Table 
1.  

The conclusion of this test is as follows. Few radial points 
(Lr = 20) compete with larger ones in numerical integration, 
which is good for reducing the computation time. An analytical 
expression for a GTO (like in Equation 3, etc.) is one equation 
with a few operations in contrast to (LrLs)m operations (m = 1, 
2, 3) in numerical integration by Equations 13-17, the latter is 
the same for this single GTO or for the entire ρmodel. However, in 
HF-SCF or DFT routines, a large LC of GTO has to be evaluated 
when expressing the ρmodel, so for expressions like the ones in 
the abstract, the number of operations can be the same for 
analytical and numerical integrations. The W in Equation 2 can 
deform the angular and radial symmetry if W ≠ 1, and it can 

decrease the numerical accuracy; however, this situation is the 
same in general CC formulas when using Equation 13 in 3 
dimensions as well. In summary, the numerical integration 
scheme in Equations 13-17 is an useful, accurate, 
recommended, and the only option if analytical integration is 
not available.  
 
4. The higher moment Coulombic energy operators in 
practice  
 

In short, CI (including correlation effects) and HF-SCF 
(without correlation correction) methods use analytical 
integration [5,19], while DFT uses numerical integration 
(Equation 13) for correlation effects [1,2] today. Numerical 
integration in CC is widely used, accepted, and indispensable in 
approximate solutions of the Schrödinger equation for 
electronic structures of molecular systems, where certain non-
linear f(ρ(1), …) functions with or without energy operators 
(Equation 2) come up.  

Interestingly, two typical quantum phenomena show a 
simple, approximate linear relationship. First, the correlation 
energy [7,20], which is more a mathematical correction than a 
physical phenomenon, obeys the equation. 
 
-0.045 (N-1) < Ecorr[hartree] < -0.030 (N-1)                    (18) 
 

Equation 18 is a quasi-linear relationship (regression 
97.2%, standard deviation 49 kcal/mole) with the number of 
electrons, N, and it slightly fluctuates with the nuclear frame 
and molecular charge [21]; see Appendix 3. The slight 
fluctuation means that Equation 18 holds for any molecular 
system, but since the gap increases linearly with N as 0.015(N-
1), it is far from being chemically accurate. However, it is 
excellent for predicting magnitude. To reach chemical accuracy, 
an adequate CC is needed. The Ecorr is a computation handicap 
to correct the single-determinant approximation for the 
ground-state wave function. (If Hee is algebraically removed 
from the Hamiltonian, the single-determinant form is an 
accurate solution [13] for ground and excited eigenfunctions; 
see Appendix 3.) An important restriction is that Equation 18 is 
based on HF-SCF/6-31G* level calculations and can be tuned 
accordingly for other bases. Second, the real phenomenon of 
zero-point energy [20,22] for neutral molecules (N = ∑A=1M ZA 
and M > 1) obeys 
  
ZPE[hartree] ≈ 0.012 ∑A=1M mA-1/2 and  

0 < ZPE[hartree] < 0.0036(N-1)                    (19) 
 

Equation 19 is a quasi-linear relationship (regression 
99.5%, standard deviation 3 kcal/mole) with the sum of the 
reciprocal square root of mass (in a.u. in the nuclear frame), and 
it visibly fluctuates with N. (The latter is clear, e.g., HCl with M = 
2 and C2H6 with M = 8, both have N = 18 electrons, while ethane 
has larger degrees of vibrational modes via 3M−5 for linear and 
3M−6 for nonlinear molecules.) For chemically accurate (1 
kcal/mol) results, Equation 29 is good only for magnitudes, but 
for accurate Zero-point energy (ZPE), it needs an accurate 
potential energy surface (including CC if necessary) and an 
accurate frequency (ν) calculation, finishing with the correct 
equation, ZPE = ½∑13M-6hPlancνi. For a medium-to-large molecule 
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consisting, e.g., of 50 atoms (144 modes of vibration), the total 
zero-point energy is substantial. Demonstrating examples for 
Equations 18 and 19 are given in Appendix 4. 

As indicated in the Introduction and reference [12], a very 
powerful correlation calculation has been reported by 
modifying the Coulomb energy operator as rij-1 → 0.99762 rij-1 
(lowering the increment of electron-electron repulsion), 
resulting from a careful fit using the sets of G2 and G3 molecules 
[23]. Its additional advantage is that existing HF-SCF routines 
need modifications only in a few program lines. Algebraically, 
this modification is more of a tuning of the Slater determinant 
wave function than of a modification of the Coulomb energy 
operator.  

Besides many devices [1,2,5,12], a powerful empirical 
correction in CC is the modification in the approximation of Vee 
and Vne in Equation 21 as r12-1 → r12-n and RC1-1 → RC1-n, respect-
tively, with n = 1+ε for electronic potential energy correction 
during or after, e.g., an HF-SCF/basis calculation with a small 
fitted value ε. For example, the sets of G2 and G3 molecules [23] 
and the atomic energies of CI [24] can be used in this fit; they 
will be reported in other works. The textbook fact is that the 
kinetic energy operator in quantum mechanics, T, is const-
ructed from the kinetic energy in classical physics (T = ½p2/m) 
by transforming it into the differential operator -½∇2. However, 
the operator for the Coulomb potential energy of two charged 
particles (between macroscopic objects or between 
microscopic electrons, protons, or nuclei) is the multiplicative 
operator r12-1 or -RA1-1, i.e., the same algebraic form (reciprocal 
distance) holds in classical and quantum physics. Just as we 
were surprised that the kinetic energy operator at the birth of 
quantum mechanics, circa 1925, was different from classical 
mechanics, we should have been surprised thereafter (in the 
author’s opinion) that the potential energy operator is, 
however, the same. In the calculation of the quantum scale, we 
also call Newton’s universal law of gravity for the force between 
macroscopic objects m1 m2/r2, in which the mechanical 
potential energy is m1 m2/r. On a cosmological scale, where 
many large bodies participate in the universe, to interpret the 
yet unexplained measurements that force us to suppose the 
existence of dark matter and energy, this law has been 
empirically corrected to resolve this issue as m1 m2/rm with m = 
2+ζ, where is a small fitted value. Empirically, it provides very 
simple and remarkable results to explain the discrepancies in 
cosmological measurements in relation to dark matter and 
energy. It originates from Milgrom’s (1983) [28] claim that if 
the gravitational force came to vary inversely linearly with the 
radius (as opposed to the inverse square of the radius, as in 
Newton's law of gravity), the dark matter and energy could be 
explained. It is important to mention that there are strong 
doubts in the scientific community about this correction with ζ 
as a plausible physical explanation, even though it empirically 
works. However, the semiempirical CC (based on physical 
considerations and improved with some empirical parameters) 
at the quantum scale is totally accepted in the scientific 
community.  

This modified approximation just mentioned for Vee and Vne 
in Equation 21 using r12-n and RC1-n from Equation 2, 
respectively, is a powerful tuning device to include correlation 
effects during a CQC algorithm via n around 1. The n = 1 is the 
theoretical power of the Coulomb energy operators (see 
Equations 2 and 21). Only a simple example is given next for 
demonstration. With a hydrogen atom accurate 1s orbital fi = 
exp(-ri), the energy integral <f1f2|r12-nf1f2> / <f1f2|f1f2> = <f1f2|r12-

nf1f2)>/π2 with the n = 0.9, 1 and 1.1 yields 0.647791, 0.632432, 
and 0.622287 h, respectively. The deviation from n = 1 is 
0.632432 - 0.647791 = -0.015359 h ≈ -9.6 kcal/mol for n = 0.9, 
and 0.632432 - 0.622287 = 0.010145 h ≈ 6.4 kcal/mol for n = 
1.1. The energy integral <f1f2|RC1-nf1f2> / <f1f2|f1f2> = <f1|RC1-

nf1)>/π with the n = 0.9, 1 and 1.1 yields 0.511865, 0.483547, 

and 0.460405 h, respectively. The deviation from n = 1 is 
0.483547 - 0.511865 = -0.028318 h ≈ -17.8 kcal/mol for n= 0.9, 
and 0.483547 - 0.460405 = 0.023142 h ≈ 14.5 kcal/mol for n = 
1.1. Importantly, Equation 18 predicts about 0.03 h ≈ 18.8 
kcal/mol correlation effect in a system per electron, a 
consistent value with these energy integrals as a function of n 
in magnitudes. For these values, the 3 and 6 dimensional cases 
of numerical integration in Equations 13 and 14 for n ≠ 1, and 
analytical integration for n = 1 were used.  

Another device is introduced, where the square of the 
Hamiltonian operator [13] can be used to calculate the 
correlation effects, together with the use of energy operators in 
Equation 2. Applying the Hamiltonian twice to the ground state 
wave function simply yields H2Ψ0= E0,electrHΨ0= E0,electr2Ψ0, that 
is, E0,electr2 = <Ψ0|H2Ψ0>/<Ψ0|Ψ0>, wherein the H2 preserves the 
linearity and hermetic property of H itself. For example, if the 
HF-SCF/basis single determinant S0 approximates Ψ0, the 
approximation |E0,electr| ≈ (<S0|H2S0>/<S0|S0>)1/2 can improve 
the approximation E0,electr ≈ <S0|H|S0>/<S0|S0> as follows: The 
non-associative property must be kept in mind; see Appendix 5. 
If the approximate S0 is used, the optimization of 
<S0|H2S0>/<S0|S0> is a more complex task than that of the 
<S0|HS0>/<S0|S0> by e.g. a HF-SCF. The variation principle is 
also not as simple: With the help of a primitive picture, because 
the <S0|HS0>/<S0|S0> depends on LCAO parameters (let it be 
now a single c) as e.g., a U-shape (c-1)2-1 parabola with 
minimum at c = 1 under the c-axis, it follows that the 
<S0|H2S0>/<S0|S0> depends on c as a W-shape curve ((c-1)2-1)2. 
The latter lies on the c-axis with its two minimum points at c = 
0 and 2, as well as the former global minimum at c = 1 has 
transformed into a local maximum at c = 1. In real systems, the 
global energy minimum we seek transforms into a local 
maximum with respect to Linear combination of atomic orbitals 
(LCAO) parameters or an increasing function. In this procedure, 
the Coulomb integrals with operators Hne2, HneHee, and Hee2 
come up, that is, with the energy operators RAiRBj, RAirjk, and rijrkl 
with A, B = 1…, M nuclei and i, j, k, l = 1…, N electrons from 
Equation 2. All these can be evaluated numerically with STO 
basis sets or analytically with GTO basis sets, as detailed in the 
previous chapters. Grouping as H= H∇+(Hne+Hee) and using 
<S0|H2|S0>= <HS0|HS0> to avoid H∇Hne and H∇Hee, it yields 
Eelectr,02 = (T+Vne+Vee)2 = T2 + 2T(Vne+Vee) + (Vne+Vee)2 ≈ 
<S0|H2S0> = <H∇S0|H∇S0> + 2<H∇S0|(Hne+Hee)S0> + 
<S0|(Hne+Hee)2S0> with normalization <S0|S0> = 1, an ab initio 
[5] term. The identification of the three integrals is obvious; for 
example, the kinetic operator H∇ comes up in the first and 
middle terms, as well as the first being a pure kinetic part of T2 
and the last being a pure Coulombic part among electrons and 
nuclei. In addition to the analytical evaluation, these integrals 
can be approximated with DFT using ρ as follows: The kinetic 
energy functional (for part of T2) with one-electron orbitals is 
<H∇S0|H∇S0> ≈ (1/4)∑1N∫(∇2ϕi)2dr1, corresponding to the 
emblematic Equation 20 in Appendix 6 (for full T). The 
∫ρ(1)ρ(2)W(1,2)dr1dr2 terms here with W from Equation 2 and 
n, m = 1, 2 correspond to the emblematic Equation 11 in 
Appendix 6.  

An example with a hydrogen atom follows. Choose a GTO 
from Equation 1 as S0 = c α G(r1) with G≡ exp(-a r2) to 
approximate the exact Ψ0 = c α exp(-r) and Ee.ectr,0 = -0.5 h, as we 
know from textbooks. The spin integrals out from <|>, so one 
can start with S0: = G and the c will drop via the normalization 
in the denominator. The H= -½∇2-1/r yields <S0|HkS0> = ∫(-2a2r2 

+3a-1/r)kG2dr with k = 1 and 2. The expression Ek(a) ≡ 
<S0|HkS0>/<S0|HS0> for k = 0, 1 and 2 yields E0 = 1, E1 = 
a1/2(2/π)1/2(-8+3(2aπ)1/2)/4 and E2 = 8a3/2(2/π)1/2(-1+ 
(16+15a)(2π/a)1/2/64), because now an analytical evalua-tion 
is available. The E1 has a minimum (variation principle) at a = 
0.282942 bohr-2 and an energy value E1= -0.424414 h with 
error 0.075586 h ≈ 47.4 kcal/mol from value -0.5. This error is 
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due to the weak basis set, {G}, used, i.e., a “basis set error”, since 
there is only N = 1 electron in the system (and no correlation 
energy). The E2 is a monotonically increasing function with a. 
The E2 with a = 0.282942 (energy optimized value of dE1/da= 
0) yields -(E2)1/2 = -0.686516 h; it is under -0.5 since the 
variation principle does not hold for the energy integral E2. Both 
approximate Eelectr,0; taking the average as (E1 - (E2)1/2)/2 = (-
0.424414 -0.686516)/2 = -0.555465 h, it deviates with 
0.055465 h ≈ 34.80 kcal/mol from value -0.5, a remarkable 
improvement over 47.4 kcal/mol. For a non-bonding state, the 
average (E1 + (E2)1/2)/2 must be taken. With more advanced 
basis sets (STO-3G, 6-31G*, and up), the energy gap is narrower 
around the theoretical value of -0.5. Tests for many atoms and 
molecules will be reported in other works.  

In relation to the quality of points, the accurate atomic wave 
function STO, and the approximate GTO for orbitals, we 
mention that, in 3D physical space, the cardinality of irrational 
numbers (which, by definition, cannot be the ratio of two 
integers, e.g., √2, e, π, etc.) is larger than that of rational 
numbers (which, by definition, are the ratio of two integers). 
These two sets, constituting the real numbers, are incountable 
infinite and countable infinite sets, respectively. Importantly, 
any small neighborhood of any irrational point contains dense, 
i.e., infinite, irrational and rational points, and vice versa. 
Rational values have infinite segments periodically (e.g., 
segment 142857 in 1/7), while irrationals do not. The 
subdivision of real numbers into rational and irrational ones 
also serves an “elementary or atomic” separation in physical 
space, still considered totally irrelevant for natural sciences 
such as physics, chemistry, or biology. The elementary concepts 
of the physical world are matter, time, space (mathematical 
coordinates), and information (laws, many in mathematical 
forms). The rational and irrational coordinates may have 
importance or consequence in electromagnetic and gravita-
tional wave propagation and in the explanation of dark matter 
and energy; the latter is present everywhere to our knowledge 
but difficult to detect and explain. For this, recall that if the 
genus (corresponding to powers in their algebraic expression, 
see, e.g., Equation 2) of any curve (as a physical trajectory) 
greater than 1 over the field of rational numbers has only 
finitely many rational points. (The genus of a curve with degree 
n is (n−1)(n−2)/2; the singularities, for example, the crossing 
point in the shape of number 8, even decrease this value.) A 
linear function passes through all real points, but, for example, 
the only pairs of rational numbers on the graph of the simple 
y2= x(x-1)(x+1) are the points (1, 0), (-1, 0), and (0, 0); 
otherwise, it passes through irrational points, and the proof is 
elementary. The general statement was conjectured in 1922 by 
L. Mordell [29] and proved by G. Faltings in 1983 [30]. 
Important related cases are, e.g., the trigonometric sin function 
(the basic function in wave theory; see Niven’s theorem stating 
rational values are at 0, 30, and 90° only), GTO and STO (see 
Equation 1 at nodes and at nuclei), the space-time distance of 
any two points in space representing two events, i.e., the 
invariant x2+y2+z2+(ict)2 (with imaginary unit, or with 
quaternion unit the alternative (ix)2+(jy)2+(kz)2+(ct)2), gravita-
tional or electronic potential proportional to (x2+y2+z2)-1/2 (see 
Equation 2), etc., which obey this property, that is, practically 
the irrational points are involved in their graph or trajectory if 
the powers (genus) are higher. 
 
5. Conclusions  
 

The wider domain of Coulomb integrands and their 
analytical and numerical integrations have been discussed and 
demonstrated for more effective applications in quantum 
chemical calculations. These are useful in correlation calcula-
tions to evaluate the two- to three-electron integrals more 
accurately and more rapidly. The power and flexibility of the 

distance operator r12x with a real value x around unity have also 
been demonstrated. 
 
Appendix 
 
Appendix 1 
 

The two-dimensional Boys function, its preequation, and its 
integration are commented on next. The one-dimensional Boys 
function F0 via the term g-3/2exp(-f/g) in the integrand is in the 
preequations Equation 3. In the middle stage of the deduction, 
for example, in Equation 3, the VP,C(2) = π3/2∫(-∞,0)g-3/2exp(f/g)dt 
with f≡ pRCP2t and g≡ p-t comes up. In the two-dimensional case, 
the same term appears in the integrand, but instead of the 
function set {f(t), g(t)}, the {f(u, t), g(u, t)} is present; see 
Equations 4, 7, 11. The right-hand side of Equations 8 and 12 
with the one-dimensional Boys function in its integrand is the 
two-dimensional Boys function. The g-3/2exp(f/g) is the core 
part of the integrands in all these cases. A finer property is that 
f = f((-u)K,(-t)L) and g = g((-u)K,(-t)L) are 2nd and 1st order 
polynomials in the variables (-u)K and (-t)L, respectively, with K, 
L = 1 or 2. The -u → u and -t → t transformations can also be 
used. The K, L = 1 generates exp(w2), while the L = 2 generates 
exp(-w2) in the integrand. Over a finite domain, the integral of 
exp(w2) is finite. 
 
Appendix 2 
 

In relation to analytical vs. numerical integration, we 
mention that the Coulomb energies between nuclei (with index 
n) and electrons (with index e) with a real (i.e. exact) one-
electron density, ρ(1)≥0, are the Vne = N∑CZC∫ρ(1)RC1-1dr1 in HF-
SCF, DFT, etc., and Vee≈ ½∫ρ(1)ρ(2)r12-1dr1dr2 in DFT, for 
example. Different theories use different physically realistic 
ρmodel(1) ≥0. The HF-SCF theory uses one real-valued energy 
optimized Slater determinant, S, for the ground state to 
approximate the wave function yielding Vne≈ N∑CZC∫S2RC1-1 and 
Vee ≈ (Ν

2)∫S2r12-1, where the integral is for N spin-orbit full space 
dx1…, dxN. Similar expressions are used in configuration 
interaction (CI) methods [5,19] for more accurate ground and 
excited states. The ratio holds as (N2)∫S*Sdx1…, dxN/½∫ρ(1)ρ(2) 
dr1dr2 = (N-1)/N → 1 if N → ∞. In this ratio, if the operator W = 
r12-1 is applied to the integrands (for energy calculations, which 
are physically exact in the nominator), a 'self-interaction' 
phenomenon appears in the (approximate) denominator, 
which must be taken into account in DFT for the ground state.  

The HF level ground state one-electron density is ρHF-

SCF(1)≡N∫S2ds1dx2…drN. As a consequence, the Vne and Vee can be 
approximated with the LC of GTO functions from Equation 1, 
and analytical integration is available. Contrary, the very first 
correlation energies in the history of DFT [1,2] using ρDFT(1) to 
approximate ρ(1), the local density approximation for exchange 
energy (CLDA∫ρ(1)4/3dr1), or the improvement of kinetic energy 
functional [25] by adding the von Weizsäcker (1935) [31] 
correction (CW∫|∇ρ(1)|2ρ(1)−1dr1), along with the later and very 
advanced exchange-correlation DFT functional as Exc[ρ(1)] = 
∫εxc(ρ(1))dr1 starting from GGA (including the ρDFT and ∇ρDFT in 
the exchange-correlation potential in εxc) and its developed 
meta-GGA (including the ∇2ρDFT), are not LC of GTO, and 
numerical integration is necessary.  
 
Appendix 3 
 

An elementary demonstration of the origin of the 
correlation effect as follows: The real eigensolution of operator 
-½(∇12+∇22) + r12-1 for the ground state (two free electrons) is 
Eelectr,0 = -1/4 and non-Slater Ψ0 = s(1,2)exp(½r12) with spin 
function s(1,2)≡ (α1β2-α2β1), while its HF approximation would 
be the Slater determinant S0= s(1,2)exp(a(r12+r22)) with energy 
optimized value for a. (In this case, the Ψ0 is not well-behaved!) 
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The correlation effect and basis set (STO-1G) error come from 
the difference between the two. Recall that the advanced 
correlation energy per electron has been predicted using the 
“three-dimensional uniform electron gas”.  

Furthermore, the real eigensolution of operator -
½(∇12+∇22) -(RO1-1+RO2-1) for the ground state (two electrons 
around a proton in the origin with a hypothetical neglect of 
electron-electron interaction) is Eelectr,0 = -1 and Slater determi-
nant Ψ0 = s(1,2)f1f2 with orbitals fi≡ exp(-ROi) and i = 1, 2. The 
<f1f2|r12-1f1f2> / <f1f2|f1f2> = 0.632432 is a weak approximation 
for Vee. These far-form energy optimized values yield a total 
ground state energy of -1+0.632432= -0.367568, a variation 
value in comparison to the CI value of -0.527716 h for hydrogen 
anion. For H-, this s(1,2)f1f2 is not an accurate ground state wave 
function, but, importantly, Equation 2 can tune even in this 
primitive algorithm. Just for curiosity, the real eigensolution of 
operator -½(∇12+∇22) + r122 for the ground state is (3, exp(-
½r122)), as well as of operator -½∇12 + RO12 is (3(½)1/2, exp(-
(½)1/2RO12)). In the latter, -RO1 yields a complex solution, and in 
both cases the eigenfunctions behave well. The polynomial 
multiplier of the derivatives of exponential drops luckily at 1/r, 
1/R, r2, and R2 potentials in this way, yielding integer and half-
integer constants. The rx and Rx cases for other positive and 
negative real x values possibly do not have analytical forms. 
Besides the fact that STO can be expanded into the LC of GTO 
(the simplest widely used in practice is called STO-3G), it is 
remarkable from the above that STO solves when Coulomb 
potentials, 1/r12 or 1/RO1, are involved, in contrast to GTO, 
which solves when potentials r122 or RO12 are involved.  
 
Appendix 4 
 

The reason the CC is necessary is exampled on the 
potassium 1st ionization potential on HF-SCF/basis level [26] 
with the good p-GCHF-5Z basis (ZA = 19 and to avoid ZPE, an 
atom is chosen): The approximated ground-state electronic 
energy difference for ionization K → K+ is -599.0171688 -(-
599.1646910) = 0.1475222 h, the experimental ionization 
potential is 0.1595125 h ≈ 100.1 kcal/mol, and the error is 
0.1595125 - 0.1475222 = 0.0119903 h ≈ 7.5 kcal/mol. It is a 
good example to represent the magnitude of values, e.g., 599.0 
vs. 0.1595 (≈ 2.7%). The HF-SCF, post-HF-SCF, DFT, etc. 
methods yield more accurate results for (the most important) 
energy differences than for absolute energies. Equation 18 with 
a particular constant such as b(N-1) drops for energy 
differences; however, it is good for estimating magnitudes. For 
example, for a K atom (N = 19 electrons), the ground state 
energy is -599.149001 and -599.73046 h at HF-SCF/6-311G and 
at the accurate G3 level, respectively. The Ecorr = -599.73046 + 
599.149001 = -0.581459 h ≈ 364.9 kcal/mol, and from Equation 
18 the -0.045*18 = -0.81 < -0.581459 < -0.030*18 = -0.54 holds. 
Similarly, for (MP2 level) geometry optimized ground state 
total energy of benzene (C6H6, N = 42 electrons), the G2 [23] and 
HF-SCF/3-21G level Ecorr/(N-1) = (-231,87667 + 229,41677)/ 
(42-1)= -0,06 h, while the G3 [23] and HF-SCF/6-31G* level 
Ecorr/(N-1) = (-232.14840 + 230.70204)/(42-1) = -0.0353 h. It 
demonstrates the basis dependence of Ecorr and Equation 18; 
more precisely, the basis set error is added to the correlation 
effect. In detail, Ecorr < 0 is the basis set limit coming from a 
single determinant approximation; however, the applied (not 
infinite, i.e., not complete) basis in practice also causes an error 
< 0 by the variation principle.  

The ZPE approximation in Equation 19 for uniatomic 
molecules (e.g., H2, C2, N2, Cl2, tricarbon C3, ozone O3, etc.) 
simplifies to ZPE[XM, h] ≈ c M/√mX and to the ratio 
ZPE[XM]/ZPE[YM] ≈ (mY/mX)1/2. For example [27], with a larger 
mass difference as in ZPE[Cl2]/ZPE[H2], the approximate 
(mH/mCl)1/2 = (1/35)1/2 ≈ 0,17 compares to the experimental 
279.22 cm-1/2179.3 cm-1 ≈ 0.13, and for smaller mass 

differences as in ZPE[N2]/ZPE[C2], the approximate (mC/mN)1/2 

= (12/14)1/2 ≈ 0.9 compares to the experimental 1175.78           
cm-1/924.0 cm-1 ≈ 1.3. Clearly, e.g., an HF-SCF/basis level 
frequency calculation is more accurate than the left in Equation 
19 (which, for example, cannot account for isomers), but even 
the HF-SCF/basis needs improved energy wells via correlation 
calculation for acceptable ZPE values.  
 
Appendix 5 
 

The nonassociative property in the application of H2 is 
fundamental, because the notation H2 itself can be misleading. 
In the operator algebra of CQC, the strict tacit agreement is the 
interpretation H2Ψ ≡ H(HΨ) and not (H2)Ψ. Simple examples 
demonstrate the trap. The differential operator O= d/dx yields 
the associative O(Of) = (O2)f = d2f/dx2, or the matrix operators 
A and B yield an associative A(Bf) = (AB)f, but O = d/dx+x yields 
non-associative O(Of) - (O2)f = x df/dx ≠ 0. For the eigenvalue 
equation of the latter, f = c exp(ax-x2/2) solves Of = af and O(Of) 
= a2f in contrast to (OO)f = (a2-ax +x2)f ≠ a2f. The twin textbook 
property is the fundamental commutator [1,5], for example, 
[x,d/dx] ≡ x(d/dx) - (d/dx)x ≠ 0, for which f = c xa solves x df/dx 
= a f vs. only f = 0 solves d(xf)/dx = a f, and similarly, with 
general matrix operators, [A,B]f ≡ (AB-BA)f ≠ 0 generally, i.e. 
non-commutative. The associative interpretation must also be 
used in the commutator, as (d/dx)(xf) = f + x df/dx and not 
((d/dx) x)f = f demonstrates.  
 
Appendix 6 
 

For any molecular system with N electrons, the magnitude 
[7,20] of the 'correlation energy' is estimated in Equation 18, a 
negative value according to the variation principle in HF-SCF. It 
is about 1-2 % of the ground state Eelectr,0, but depends on the 
nuclear frame and is far above the chemical accuracy (1 
kcal/mol). In the HF-SCF formalism, the 'correlation energy' is 
defined [5] with the energy optimized ground state Slater 
determinant Eelectr,0 = <S0|HS0> + Ecorr, i.e., it comes from the 
error in the approximation Ψ0 ≈ S0. Besides the Ecorr, there is a 
basis set error as well. A typical calculation for Ecorr was, for 
example, the emblematic Moller-Plesset method [5], but it did 
not bring the long-awaited accuracy and DFT was born. In the 
KS formalism [1,2], the approximation of kinetic energy (T) is 
responsible for the 'correlation' energy, notated Ec, for  
 
T≡ <Ψ0|H∇Ψ0> ≈ Ts[ρ] ≡ (-½)∑1N∫ϕi∇2ϕιdr1                    (20) 
 

The approximation [1,2] for electron-electron repulsion 
(Vee) is responsible for 'exchange' energy, notated Ex, and the 
nuclear-electron attraction (Vne) is 100% accurate if the real 
(accurate) ρ is used in Equation 21:  
 
Vee≡ <Ψ0|HeeΨ0> ≈ ½ ∫ρ(1)ρ(2) r12-1 dr1dr2 and Vne≡  

<Ψ0|HneΨ0> = ∑C=1M ∫ρ(1) RC1-1 dr1                    (21) 
 

The ρ in Equations 20 and 21 is the ground-state one-
electron density; it should be indexed as ρ0. Furthermore, Ec >0, 
Ex < 0, and Ecorr ≈ Exc≡ Ex+Ec < 0. The Ecorr, Ec, and Ex are about in 
the same magnitude. The KS formalism (calculating Exc during) 
approximates Eelectr,0 and energy differences better than the HF-
SCF (with calculating Ecorr after) in the routines of today. The 
price of convenient approximations in Equations 20 and 21 and 
empirical functionals for the correlation effect (Exc) is that the 
variation principle does not hold in DFT, i.e., the Exc is non-
variational, unless it is built into the algorithm.  
 
Abbreviations 
 

CC = Correlation calculation; CQC = Computational quantum 
chemistry; CI = Configuration interaction methods; DFT = 
Density Functional Theory; Etotal,0 = Eelectr,0 + Vnn; FL(v) ≡ ∫(0,1) 
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exp(-vt2) t2L dt, the Boys function, L ≥ 0 integer; GTO = Primitive 
Gaussian type atomic orbital, the GAi(a, nx, ny, nz) in Equation 1 
with n = 2; HF-SCF/basis = Hartree-Fock self-consistent field 
method on a chosen basis set level; h = Hartree; KS formalism = 
Kohn-Sham formalism; LC = Linear combination; LCAO = Linear 
combination of atomic orbitals; RA≡ (RAx, RAy, RAz) or (xA, yA, zA) 
= 3D position (spatial) vector of (fixed) nucleus A; RAB≡ |RA-RB| 
= Nucleus-nucleus distance; RAi≡ |RA-ri| = Nucleus-electron 
distance; ri≡ (xi, yi, zi) = 3D position (spatial) vector of (moving) 
electron i; rij≡ |ri-rj| = Electron-electron distance; ρ(i)≡ρ(ri): 
Real3 → Real, the one-electron density, the case (n, m)=(0,0) in 
the main title reduces to the normalization as (∫ρ(1)dr1)i = Ni for 
i = 1, 2 and 3, respectively, where N is the number of electrons 
and M is the number of nuclei in the system (with atomic 
masses m1, m2, …, mM); STO = Slater-type atomic orbital, the 
GAi(a, nx, ny, nz) in Equation 1 with n = 1; ZPE = Zero point 
energy.  
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