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The coumarin moiety plays an important role in the large number of natural products 
possessing different kinds of biological diversity. Coumarin carboxylic acids show a wide 
range of biological activities in the pharmaceutical and agricultural fields. Knoevenagel 
condensation is one of the important reaction pathways for synthesizing coumarin 
derivatives, and many methodologies have been developed to synthesize this class of 
compounds. A more environmentally friendly method of synthesizing 3-carboxy coumarins 
has been successfully carried out using 50% aqueous NaPTS hydrotropes at room 
temperature, along with various substituted 2-hydroxy benzaldehydes and Meldrum’s acid. 
This process involves Knoevenagel condensation followed by intramolecular cyclization, 
providing better product yields (78-95%). 
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1. Introduction 
 

Nowadays, researchers are more interested in synthesizing 
heterocyclic compounds using greener approaches. Several 
researchers have been attracted toward green chemistry as a 
means of discovering new chemical organic routes that are 
more efficient and environmentally friendly. To minimize 
environmental pollution, the use of less toxic chemicals, the use 
of environmentally friendly protocols, and the use of water as 
solvents are the main choices of researchers to synthesize 
biologically active heterocyclic compounds [1]. Compounds 
containing coumarin moieties have great synthetic utility in 
organic synthesis. The synthesis of coumarin and its derivatives 
has fascinated the interest of synthetic chemists due to its 
unique structural motifs, which serve as a crucial building block 
for a variety of natural and semi-synthetic products [2,3]. 
Coumarin and its derivatives have a wide range of biological 
effects, including antitumor [4-7], anticoagulant [8,9], 
antifungal [10], antibiotic [11], anti-HIV-1 [12-15], and anti-
oxidant properties, etc. [16,17] (Figure 1). Heterocyclic 

compounds containing coumarins, or 3-carboxy coumarins, are 
a unique class of chemicals with a wide range of applications. 
According to the literature, these compounds are being used as 
synthons of a variety of natural and semi-synthetic pharma-
cological agents such as β-lactams [18], isoureas [19], and 
tetrahydropyridones [20]. In addition to these applications, 
these compounds are also commonly used as fluorescent 
probes [21] and triple oxygen sensitizers [22]. The most 
effective way to create 3-carboxy coumarin derivatives is to use 
the one-pot approach, which involves the reaction of 2-
hydroxybenzaldehyde with Meldrum’s acid, which proceeds via 
Knoevenagel condensation followed by intramolecular 
cyclization [23]. 

Various methods have been reported to synthesize carboxy 
coumarin derivatives from 2-hydroxybenzaldehyde and 
Meldrum’s acid which involve the use of ammonium acetate 
[24], triethylbenzyl ammonium chloride (TEBAC) [25], 
Yb(OTf)3 [26], FeCl3 [27], SnCl2 [28], K3PO4 [29], [Hmim]Tfa [30], 
Magnetic cellulose/gamma-Fe2O3/Ag nanocatalyst [31], amide-
functionalized    heterogeneous    {[Cd2(2-BPXG)(Fum)2 (H2O)2]·  
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Figure 1. Some biologically active coumarin derivatives. 
 

 
 

Scheme 1. Synthesis of 3-carboxy coumarin derivatives. 
 
2H2O}n [32], extract of acacia concinna pods [33], K2CO3 or 
NaN3 [34], extract of banana peels [35], NEt3 [36], choline 
chloride/urea [37], L-lysine [38], silica sulfuric acid [39], etc. 
Synthesis of 3-carboxy coumarins using the aforementioned 
methods has both benefits and drawbacks, including the use of 
hazardous chemicals, organic solvents and reagents, severe 
reaction conditions, laborious work-up procedures, low yield 
and purification of desired products. At present, there is a great 
demand to overcome these demerits and to find a more 
beneficial protocol that utilizes the maximum principles of 
green chemistry. Our research group is constantly working on 
developing newer, greener methodologies for synthesizing 
heterocyclic compounds [40-42]. Currently, the low-solubility 
problems of organic compounds are well solved by the use of 
hydrotropes. Hydrotropes were first discovered in 1916 by Carl 
Neuberg. These are the compounds that are responsible for 
increasing the solubility of the hydrophobic compounds in 
water up to 200 times. Hydrotropes have many advantages, as 
they are stable to heat, air, and water and are less toxic [43]. 
Similarly, to the critical micelle concentration (CMC) for a 
surfactant, the minimal hydrotrope concentration (MHC) is the 
hydrotrope concentration beyond which hydrotrope aggre-
gation is responsible for an increase in water solubility. In 1946, 
McKee addressed the possible use of hydrotropes in industry 
[44]. Hydrotropes have wide applications in pharmaceuticals, 

agrochemicals, health care, and household as well as in the 
extraction of fragrances [45]. Numerous studies have been 
reported on the use of aqueous hydrotropic solutions as a 
particular kind of alternative reaction media for the synthesis 
of organic compounds [46]. Upon extensive literature review, it 
was found that no research was done on the use of hydrotropes 
for the synthesis of 3-carboxy coumarins. In light of all these 
considerations, we have found a unique method for producing 
biologically potential 3-carboxy coumarins by using aqueous 
hydrotropes as a greener media (Scheme 1). 
 
2. Experimental  
 
2.1. Materials 
 

For this experiment, all chemicals and solvents were 
acquired from Thermo Fisher and Sigma Aldrich with a purity 
greater than 98%, and no further purification was required. The 
known compounds were identified by comparing their melting 
points and spectroscopic data. The melting points are uncor-
rected and were obtained using the open capillary method. 
Using thin layer chromatography (TLC), the progress of the 
reaction was monitored employing Merck silica gel 60F254 
plates. 
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Table 1. Optimization study for the synthesis of 3-carboxy coumarin derivatives *. 
Entry Catalyst concentration Time (h) Yield (%) 
1 H2O 6 55 
2 10% Hydrotropes NaPTS 6 65 
3 30% Hydrotropes NaPTS 6 75 
4 50% Hydrotropes NaPTS 6 85 
5 50% Hydrotropes NaBS 6 60 
* Reaction condition: Salicylaldehyde (1 mmol) and Meldrum’s acid (1 mmol). 
 
2.2. Instrumentation 
 

The characterization of the obtained products was 
performed using FT-IR, 1H NMR, and 13C NMR spectroscopic 
techniques. The Shimadzu IR-Affinity spectrophotometer (KBr) 
and PerkinElmer FT-IR spectrophotometer with an ATR 
attachment were used to record the infrared spectra.  NMR 
spectra (DMSO-d6) were recorded on a Bruker Advance Neo-
500 MHz spectrometer with TMS as an internal standard.  
 
2.3. Synthesis of 3-carboxy coumarins 
 

A mixture of substituted salicylaldehyde (1 mmol), 
Meldrum’s acid (1 mmol), and 50 % aqueous hydrotrope NaPTS 
(5 mL) was vigorously stirred at room temperature in a 25 mL 
round bottom flask. The progress of the reaction was tracked by 
TLC (Hexane: EtOAc, 80:20). Once the reaction was finished, the 
reaction mass was added to ice-cold water and thoroughly 
agitated, and the resulting solid was filtered out. The solid 
product was washed with water to obtain almost pure 3-
carboxy coumarins. All compounds are purified by simple 
recrystallization from ethanol. Characterization data of some 
synthesized compounds are given below. 

2-Oxo-2H-chromene-3-carboxylic acid (3a): Color: White. 
Yield: 85%. M.p.: 188-190 °C. FT-IR (KBr, ν, cm-1): 3473, 3338, 
3174, 3057 (OH), 2993, 1736 (C=O), 1676 (C=O), 1570, 1452, 
1226, 1165, 1041, 831, 771. 1H NMR (500 MHz, DMSO-d6, δ, 
ppm): 7.36-7.40 (m, 2H, Ar-H), 7.68-7.72 (m, 1H, Ar-H), 7.86 (q, 
1H, J = 7.7 Hz, Ar-H), 8.69 (s, 1H, C-H), 11.96 (s, 1H, OH). 13C NMR 
(125 MHz, DMSO-d6, δ, ppm): 116.1, 117.9, 118.3, 124.9, 130.2, 
134.4, 148.4, 154.5, 156.9, 164.0.  

7-(Diethylamino)-2-oxo-2H-chromene-3-carboxylic acid 
(3b): Color: Orange. Yield: 95%. M.p.: 216-218 °C. FT-IR (KBr, ν, 
cm-1): 3462, 3263, 3111 (OH), 2984, 1736 (C=O), 1668 (C=O), 
1577, 1452, 1357, 1267, 1084, 808, 775. 1H NMR (500 MHz, 
DMSO-d6, δ, ppm): 1.13 (t, 6H, J = 7.0 Hz, CH3), 3.47 (q, 4H, J = 7.0 
Hz, CH2), 6.56 (s, 1H, Ar-H), 6.78 (q, 1H, J = 9.0 Hz, Ar-H), 7.63 
(d, 1H, J = 9.0 Hz, Ar-H), 8.57 (s, 1H, Ar-H), 12.50 bs (1H, OH). 
13C NMR (125 MHz, DMSO-d6, δ, ppm): 12.2, 44.2, 95.8, 107.1, 
109.9, 125.4, 127.9, 131.7, 149.3, 152.8, 157.7, 159.4, 164.3.  

6-Chloro-2-oxo-2H-chromene-3-carboxylic acid (3d): Color: 
White. Yield: 78%. M.p.: 118-120 °C. FT-IR (KBr, ν, cm-1): 3437, 
3255, 3165 (OH), 3038, 2943, 1734 (C=O), 1670 (C=O), 1489, 
1338, 1201, 1085, 821, 709. 1H NMR (500 MHz, DMSO-d6, δ, 
ppm): 7.46 (1H, J = 8.8 Hz, Ar-H), 7.75 (q, 1H, J = 8.7 Hz, Ar-H), 
8.01 (s, 1H, Ar-H), 8.67 (s, 1H, Ar-H), 11.44 (bs, 1H, OH). 13C NMR 
(125 MHz, DMSO-d6, δ, ppm): 118.1, 119.3, 119.6, 128.4, 128.9, 
133.6, 146.9, 153.0, 156.2, 163.7. 

6,8-Dibromo-2-oxo-2H-chromene-3-carboxylic acid (3h): 
Color: White. Yield: 80%. M.p.: 206-208 °C. FT-IR (ATR, ν, cm-1): 
3590, 3524, 3065 (OH), 1763(C=O), 1634(C=O), 1549, 1449, 
1250, 1159, 864, 741. 1H NMR (500 MHz, DMSO-d6, δ, ppm): 

8.14 (d, 1H, J = 2.2 Hz Ar-H), 8.19 (d, 1H, J = 2.2 Hz Ar-H), 8.50 
(s, 1H Ar-H), 12.40 (bs, 1H, OH). 13C NMR (125 MHz, DMSO-d6, 
δ, ppm): 109.8, 116.0, 121.1, 131.1, 137.4, 144.4, 149.9, 155.6, 
163 

6,8-Dichloro-2-oxo-2H-chromene-3-carboxylic acid (3j): 
Color: White. Yield: 88%. M.p.: 200-202 °C. FT-IR (ATR, ν, cm-1): 
3461, 3075 (OH), 1747 (C=O), 1644 (C=O), 1556, 1456, 1250, 
998, 803, 616. 1H NMR (500 MHz, DMSO-d6, δ, ppm): 7.91 (d, 1H, 
J = 2.4 Hz, Ar-H), 7.94 (s, 1H, J = 2.3 Hz, Ar-H), 8.62 (s, 1H, Ar-H), 

12.47 (bs, 1H, OH). 13C NMR (125 MHz, DMSO-d6, δ, ppm): 120.3, 
120.5, 120.6, 127.9, 128.2, 132.6, 146.3, 148.7, 155.0, 163.4. 
 
3. Results and discussion 
 
3.1. Synthesis of 3-carboxy coumarins 
 

The synthesized products were characterized using FT-IR, 
1H NMR, and 13C NMR spectroscopic techniques. All known 
compounds exhibited physical and spectroscopic data 
consistent with those previously reported in the literature [34]. 
The IR absorption band at 3107 to 3590 cm-1 indicates the 
presence of a hydroxyl (OH) group in the synthesized organic 
compounds. The findings of different absorption peaks at 1634 
to 1676 cm-1 indicate the presence of carbonyl groups (C=O) 
associated with the carboxyl group (COOH) in organic 
compounds. The IR bands at 1734 to 1763 cm-1 indicate the 
stretching vibration frequency of carbonyl groups (C=O) of the 
cyclic ester within the organic compounds. The observed peak 
in the 1H NMR spectra of the compounds ranging from δ 11.44 
to 12.50 ppm broad signal indicates the presence of the 
hydroxyl (OH) group of the carboxyl moiety present within the 
organic compounds. In the 13C NMR spectrum, two distinct 
peaks appeared between δ 163.0 and 164.3 ppm indicating the 
presence of carboxyl groups. Furthermore, peaks between δ 
155.0 and 156.9 ppm were observed, corresponding to the 
carbonyl of lactone in the coumarin moiety. These findings are 
closely aligned with data from the literature [47]. 

A straightforward, clean, and energy efficient protocol is 
reported that involves one-pot synthesis of a series of 
biologically active 3-carboxy coumarins involving 50% aqueous 
hydrotropes as medium. Initially, our investigation started with 
the selection of suitable hydrotropes for the present work. 
Among the different hydrotropes, sodium p-toluene sulfonate 
(NaPTS) is the most attractive as it is easily available and stable 
to both air and moisture. As a solvent, we decided to utilize a 
50% aqueous solution of NaPTS because most organic 
molecules can be sufficiently dissolved at this concentration. In 
the present work, salicylaldehyde (1 mmol) and Meldrum’s acid 
(1 mmol) were chosen as the starting materials for the model 
reaction. These ingredients were mixed with 5 mL of water in a 
25 mL round bottom flask and the reaction was carried out at 
room temperature. The progress of the reaction was monitored 
by using TLC (Hexane: EtOAc, 80:20). After 6 hours, the reaction 
yield was found to be 55%. It should be noted that by adding 
10% NaPTS hydrotrope, the yield of the product increased to 
65% at room temperature. Taking this into consideration, we 
continue our study by increasing the percentage of hydrotrope 
and found that the yield of the product was 75 for 30% of aq. 
hydrotrope and 85 for 50% of aq. hydrotrope at room 
temperature for 6 hours. We also found that 50% of sodium 
benzene sulfonate (NaBS), which slightly increased the product 
yield to 60%, was not suitable for further investigation. The 
optimum reaction condition was found based on these findings, 
as shown in Table 1. The overall relevance of the 50% of aq. The 
NaPTS hydrotrope as a reactant framework was analyzed with 
various substituted salicylaldehyde and Meldrum’s acid to 
synthesize a number of 3-carboxy coumarin derivatives under 
streamlined conditions.  
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Table 2. Synthesis of 3-carboxy coumarin derivatives in aq. hydrotrope at room temperature. 
Entry Aldehyde Product Yield 

(%) 
Melting point (°C) Reference 
Found  Reported  

1 Salicylaldehyde 3a 85 188-190  188-190 [28] 
2 4-(N,N-diethyl amino)-2-hydroxybenzaldehyde 3b 95 216-218 212-214 [35] 
3 2,3,4-Trihydroxybenzaldehyde 3c 87 190-192 190-192 [35] 
4 5-Chloro-2-hydroxybenzaldehyde 3d 78 118-120 116-118 [39] 
5 5-Bromo-2-hydroxybenzaldehyde 3e 78 198-200 194-196 [39] 
6 4-Methoxy-2-hydroxybenzaldehyde 3f 91 192-194 193-194 [34] 
7 5-Methoxy-2-hydroxybenzaldehyde 3g 80 198-200 198-200 [34] 
8 3,5-Dibromo-2-hydroxybenzaldehyde 3h 80 206-208 206-208 [34] 
9 2-Hydroxynapthaldehyde 3i 80 234-236 236-237 [30] 
10 3,5-Dichloro-2-hydroxybenzaldehyde 3j 88 200-202 199-202 [34] 
 
Table 3. Comparison of our results with previously reported catalysts in water of compound 3a.  
Entry Catalyst Condition Time (h) Yield (%) Reference 
1 TEBAC, H2O 60 °C 6 78 [12] 
2 SnCl2·2H2O 80 °C 1 80 [15] 
3 K2CO3/NaN3, H2O Room temp. 20 92 [21] 
4 Et3N·H2O  60 °C 6 90 [23] 
5 50% Aq. NaPTS Room temp. 6 85 Current work  

 

 
 

Figure 2. Reusability test of aqueous hydrotropes for the synthesis of compound 3a. 
 

 
 

Scheme 2. Plausible mechanism of the micelles promoted the synthesis of 3-carboxy coumarins using aqueous hydrotrope. 
 
In all cases, 3-carboxy coumarins were obtained with 

excellent yields (72-92%) using various substituted salicyl-
aldehyde’s as shown in Table 2. In addition, all reactions were 
completed in the short reaction time. The synthesized 3-
carboxy coumarin derivatives were characterized by FT-IR and 
NMR (1H and 13C) spectroscopy. 
 
3.2. Reusability of catalyst 
 

In addition, an investigation was conducted to determine 
the reusability of 50% of the aq. NaPTS hydrotrope as a catalytic 
framework. It was discovered that 50% of aq. NaPTS hydro-

trope catalytic framework could be reused successfully in 
subsequent responses up to three times. The product was 
filtered once the reaction was complete and the filtrate was 
subsequently used for the synthesis of compound 3a. Better to 
excellent yields were obtained with compound 3a (82-85%) as 
shown in Figure 2. The reusability of 50% of aq. NaPTS 
hydrotrope as a catalytic system at room temperature has 
successfully reached the goal of green chemistry. The 50% of aq. 
NaPTS hydrotrope catalytic framework was found to be 
successfully reused in subsequent responses up to three times 
to achieve better to excellent yields. 
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To show the benefits of this protocol, previous protocols in 
water and their yields for the synthesis of 3-carboxy coumarins 
are summarized in Table 3. Most of the protocols used for the 
synthesis of 3-carboxy coumarins involved the condensation of 
substituted salicylaldehyde and Meldrum’s acid with the use of 
external metals and expensive reagents. In the current protocol, 
we have demonstrated that 50% aqueous NaPTS hydrotrope 
could be converted into a valuable and environmentally 
friendly catalytic medium in the synthesizing of newer hetero-
cyclic compounds that benefit not only humans but also the 
environment. Furthermore, the current protocol is almost 
capable of reducing the factors that contribute to environ-
mental problems. 

Characterizations of the obtained products were performed 
using 1H and 13C NMR techniques.  Knoevenagel condensation 
of substituted salicylaldehyde’s with Meldrum’s acid produces 
an intermediate (I), which is then cyclized intramolecularly. 
This method can be used to describe the production of 3-
carboxycoumarin (P). Initially, in the aqueous solution of 
hydrotrope, the carbanion formed from Meldrum’s acid attack 
on the carbonyl carbon of the salicylaldehyde followed by the 
loss of water molecules leads to the formation of intermediate 
(I), as shown in Scheme 2.  
 
4. Conclusion 
 

The present study introduced a practical method for the 
synthesis of 3-carboxy coumarin using 50% aqueous NaPTS 
hydrotrope as a greener medium at room temperature. 
Furthermore, several advantages, such as column chromato-
graphy, free purification, easy isolation of the products, 
satisfactory yield of the products, and reusable reaction 
medium, make this protocol environmentally benign. The 
synthesized compounds were characterized using FT-IR, 1H 
NMR, and 13C NMR spectroscopic techniques. 
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