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The new monohydrated n-hexylammonium hydrogen oxalate salt [HexNH3]2[HC2O4]2·H2O 
(1) (HexNH3 = C6H16N+) has been prepared at room temperature, by mixing dehydrated 
oxalic acid with n-hexylamine. Salt 1 isolated as single-crystals, crystallizes in the 
orthorhombic system (space group Pna21) with cell constants of a = 14.1534(8) Å, b = 
5.6656(3) Å, c = 26.8153(16) Å, V = 2150.3(2) Å3 and Z = 4. Two n-hexylammonium cations, 
two hydrogen oxalate anions, and one water molecule compose the asymmetric unit. All 
components of salt 1 are linked through N-H···O and O-H···O hydrogen bonding interactions 
leading to an extended supramolecular self-assembly. Structural characterization of 1 was 
completed by infrared and UV-visible spectroscopy. Elemental analysis (C, H, and N) also 
corroborates the X-ray crystal structure. The antibacterial activity of salt 1 against a 
bacterial species of the genus Streptomyces, extracted from potatoes, was then investigated. 
The antibiotic susceptibility test revealed that the bacteria were highly sensitive to salt, from 
a concentration of 6 mg/mL, thus acting as an effective bactericide. 
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1. Introduction 
 

Crystal engineering, which consists of designing molecular 
solids through weak intermolecular interactions, is a research 
field in its own right, based on a strong interdisciplinary 
approach involving organic and coordination chemistry, 
supramolecular chemistry, crystallography, and solid-state 
chemistry [1]. The fields of application of crystal engineering 
are also numerous and varied, for example: gas sorption and 
storage, pharmaceutical polymorphs and co-crystals, solar 
energy conversion, and new prospects are emerging, such as 
mechanochemical synthesis and the response to antimicrobial 
resistance [2,3]. Dicarboxilic acid derivatives, in particular, 
oxalate and hydrogen oxalate, are reported to be suitable 
building blocks to design organic salts. They can be considered 
one of the simplest basic units capable of acting as both a donor 
and an acceptor. Combined with other synthons, such as 

amines, which are also well adapted as building blocks for 
crystal engineering [4,5], the possibilities for supramolecular 
constructions are endless. Numerous examples can be found in 
the literature. Several research groups, such as Ballabh et al., 
Hayines and Pietersen, and Dzink et al. have described, for 
example, oxalate-based structures stabilized by ammonium 
cations [6-8]. Mac Donald et al., then Dziuk et al. have also 
published the architecture topology of secondary interactions 
in some oxalate compounds [9-11]. In coordination chemistry, 
the strong ability of the oxalate anion to coordinate with metal 
atoms has also encouraged many research groups to carry out 
work in this area [12]. In the biological field, oxalates are 
attracting growing interest due to their recognized 
antimicrobial activity [13-15]. This may be explained by the fact 
that in nature, oxalic acid and oxalates play a key role in the 
metabolism of plants, fungi, and bacteria [16].  
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Figure 1. Molecular representation of [C6H16N+]2[HC2O4–]2·H2O (1). 

 
Recently, Braga et al. described the use of gallium oxalates 

as drug-drug salts showing antimicrobial performance against 
virulent bacterial strains [17]. In our laboratory, we have also 
been interested in these compounds for a long time and have 
published several crystallographic structures of organic salts 
and complexes derived from oxalates and hydrogen oxalates 
[18-20]. In this present article, we report the X-ray structure 
and spectroscopic characterization of the new hydrogen oxalate 
salt [C6H16N+]2[HC2O4-]2·H2O (1) (Figure 1), prepared from 
oxalic acid and n-hexylamine. The objective of the present work 
falls within the framework of the fight against phytopathogenic 
bacteria that are responsible for bacterial diseases in plants. 
Therefore, the antibacterial activity of salt 1 against a bacterial 
species of the genus Streptomyces, extracted from potatoes, was 
studied. 
 
2. Experimental 
 
2.1. Material and measurements 
 

Oxalic acid dihydrate (H2C2O4·2H2O) was purchased from 
Merck while n-hexylamine (HexNH2) was purchased from 
Aldrich Chemicals and used without further purification. The 
infrared spectrum was recorded using a PerkinElmer FT-IR 
spectrometer in the 4000-400 cm-1 region at Cheikh Anta Diop 
University in Dakar (Senegal). The UV-vis spectrum was 
recorded in H2SO4 (2 N) in the 200-1000 nm region with a speed 
of 600 nm/min and with strong smoothing using a Thermo 
Scientific Evolution 300 UV-VIS device controlled by Visionpro 
software. Elemental analysis was performed at the Plateforme 
d’Analyse Chimique et de Synthèse Moléculaire de l’Université 
de Bourgogne (PACSMUB) on a Fisons EA 1108 CHNS 
apparatus. 
 
2.2. Synthesis and characterization of salt 1 
 

The title salt was synthesized by mixing 0.252 g (2 mmol) 
of oxalate acid and 0.204 g (2 mmol) of n-hexylamine in 40 mL 
of water. The resulting colorless mixture was stirred at room 
temperature for 2 hours. After a few days of slow evaporation 
at 60 °C, 0.336 g of colorless single crystals were obtained with 
a yield of 74%. Analysis calculated for C16H36N2O9 (400.47): C, 
47.99; H, 9.06; N, 7.00 Found: C, 47.89; H, 9.00; N, 6.83%. FT-IR 
(ATR, ν, cm–1): 3341, 3042, 2955, 2928, 2857, 1923, 1722, 1687, 
1602, 1517, 1473, 1398, 1340, 1217, 1098, 1040, 1017, 976, 
968, 881,704, 481, 404. UV-visible data in H2SO4 (2 N): λmax 
(nm): 295 (n → π*). 
 
2.3. X-ray data collection and structure refinement 
 

A suitable clear light colorless plate-shaped crystal with 
dimensions 0.25×0.10×0.08 mm3 was mounted on a mylar loop 
oil. Data were collected using a Bruker Kappa Apex II CCD 
diffractometer operating at T = 110 K. Data were measured 
using f and w scans with Mo Kα radiation. The diffraction 
pattern was indexed and the total number of runs and images 
was based on the strategy calculation from the APEX3 program 
[21]. The maximum resolution achieved was Q = 27.602 ° (0.77). 
The unit cell was refined using SAINT V8.40B [22] on 9864 
reflections, 16% of the observed reflections. Data reduction, 

scaling, and absorption corrections were performed using SAINT 
V8.40B. The final completeness is 99.90 % out to 27.602 in Q. 
SADABS-2016/2 [23] was used for absorption correction. 
wR2(int) was 0.0532 before and 0.0467 after correction. The 
ratio of minimum to maximum transmission is 0.9447. The 
absorption coefficient m of this material is 0.100 mm–1 at this 
wavelength (λ = 0.71073Å) and the minimum and maximum 
transmissions are 0.704 and 0.746. The structure was solved 
and the space group Pna21 (# 33) was determined by the 
ShelXT 2018/2 structure solution program [24] using dual 
methods and refined by full matrix least squares minimization 
on F2 using version 2018/3 of ShelXL 2018/3 [25]. All non-H 
atoms were refined anisotropically. Hydrogen atom positions 
were calculated geometrically and refined using the riding 
model. Programs used for the representation of the molecular 
and crystal structures: Olex2 [26], and Mercury [27]. Crystal 
data, data collection, and structure refinement details for 
compound 1 are summarized in Table 1. Bond lengths, bond 
angles, and torsion angles are listed in Tables 2-4, respectively. 

 
2.4. Antibacterial method testing 
 

The antimicrobial efficacy was evaluated as in previous 
work [28,29], according to current disk diffusion antibiotic 
susceptibility testing protocols [30]. The nonpathogenic Gram-
positive culture used to test the antibacterial activity of salt 1 
was Streptomyce. Antimicrobial activity was evaluated using 
the established antimicrobial disk zone of inhibition assay 
[31,32]. For the preparation of this culture medium, 23 g of 
powder of this nutrient agar (NA) were solubilized in 1 L of 
distilled water in a glass bottle. A clean magnetic bar is 
immersed in the bottle containing the mixture. This bottle is 
then placed on the stirrer so that the powder dissolves 
completely and a homogeneous solution is obtained. The 
medium was then autoclaved at 120 ° C with a pressure of 1.5 
bar for sterilization for 45 minutes. After cooling for a few 
minutes, the supercooled medium is poured into Petri dishes, 
under the laminar flow hood to avoid any contamination during 
this operation. A suspension of the bacteria to be tested was 
made in a bottle containing physiological water. In each Petri 
dish containing the NA medium, 100 µL of this suspension was 
poured and spread using a glass spreader (modified Pasteur 
pipette) on the entire surface of the dish. The strain used is 
isolated from potato samples. This strain was stored in a freezer 
at 4 °C and sub-cultured once a week. When carrying out this 
test, the bacteria is transplanted onto the agar to rejuvenate it 
so that it is only 24 hours old. 

Antimicrobial susceptibility testing was performed using 
modified microdilution of the following methods from the 
literature [33,34]. We used a bacterial strain of a species of the 
genus Streptomyces (Gram-positive bacteria) extracted from 
potatoes. The antibacterial activity of the salt was tested by the 
zone of inhibition test. For this purpose, disks of sterile 
Whatmann filter paper measuring 6 millimeters in diameter are 
impregnated with different concentrations (6, 10, and 20 
mg/mL) of the salt previously dissolved in dimethylsulfoxide 
(DMSO). Using sterile forceps, the discs are placed on the 
surface of a medium seeded (spread) with a bacterial 
suspension.  
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Table 1. Crystal data and structure refinement for compound 1. 
Empirical formula  C16H36N2O9  
Formula weight  400.47  
Temperature (K)  110  
Crystal system  orthorhombic  
Space group  Pna21  
a (Å)  14.1534(8)  
b (Å) 5.6656(3)  
c (Å)  26.8153(16)  
α (°)   90  
β (°) 90  
γ (°) 90  
Volume (Å3)  2150.3(2)  
Z  4  
ρcalc (g/cm3)  1.237  
μ/mm-1  0.100  
F(000)  872.0  
Crystal size (mm3)  0.25 × 0.1 × 0.08  
Radiation  Mo Kα (λ = 0.71073)  
2Θ range for data collection (°)  5.756 to 55.204  
Index ranges  –18 ≤ h ≤ 18, –7 ≤ k ≤ 7, –34 ≤ l ≤ 34  
Reflections collected  60974  
Independent reflections  4996 [Rint = 0.0312, Rsigma = 0.0148]  
Data/restraints/parameters  4996/1/254  
Goodness-of-fit on F2  1.055  
Final R indexes [I>=2σ (I)]  R1 = 0.0269, wR2 = 0.0674  
Final R indexes [all data]  R1 = 0.0309, wR2 = 0.0697  
Largest diff. peak/hole / e Å-3  0.29/-0.14  
Flack parameter –0.3(9) 
 
Table 2. Bond lengths for compound 1. 
Atom Atom Length (Å)   Atom Atom Length (Å) 
O1 C13 1.317(2)   C1 C2 1.516(3) 
O2 C14 1.242(2)   C2 C3 1.526(2) 
O3 C14 1.259(2)   C3 C4 1.524(3) 
O4 C13 1.204(2)   C4 C5 1.531(3) 
C13 C14 1.553(2)   C5 C6 1.513(3) 
O5 C15 1.312(2)   N2 C7 1.487(2) 
O6 C15 1.204(2)   C7 C8 1.520(3) 
O7 C16 1.258(2)   C8 C9 1.522(2) 
O8 C16 1.242(2)   C9 C10 1.524(3) 
C15 C16 1.553(2)   C10 C11 1.524(3) 
N1 C1 1.491(2)   C11 C12 1.520(3) 
 
Table 3. Bond angles for compound 1. 
Atom Atom Atom Angle (°)   Atom Atom Atom Angle (°) 
O1 C13 C14 111.98(13)   O8 C16 C15 118.45(14) 
O4 C13 O1 126.11(16)   N1 C1 C2 110.83(15) 
O4 C13 C14 121.92(15)   C1 C2 C3 112.22(16) 
O2 C14 O3 126.39(16)   C4 C3 C2 112.68(16) 
O2 C14 C13 118.71(14)   C3 C4 C5 114.34(17) 
O3 C14 C13 114.89(14)   C6 C5 C4 113.92(18) 
O5 C15 C16 112.13(13)   N2 C7 C8 110.67(15) 
O6 C15 O5 126.21(16)   C7 C8 C9 112.02(15) 
O6 C15 C16 121.65(15)   C8 C9 C10 112.78(16) 
O7 C16 C15 115.26(13)   C11 C10 C9 113.78(17) 
O8 C16 O7 126.29(15)   C12 C11 C10 112.48(18) 

 
Table 4. Torsion angles for compound 1. 
A B C D Angle (°)   A B C D Angle (°) 
O1 C13 C14 O2 –7.7(2)   N1 C1 C2 C3 –173.86(15) 
O1 C13 C14 O3 172.21(16)   C1 C2 C3 C4 –171.12(16) 
O4 C13 C14 O2 172.16(18)   C2 C3 C4 C5 –175.59(17) 
O4 C13 C14 O3 –8.0(2)   C3 C4 C5 C6 –63.8(2) 
O5 C15 C16 O7 –169.48(16)   N2 C7 C8 C9 –170.70(14) 
O5 C15 C16 O8 11.0(2)   C7 C8 C9 C10 –171.90(16) 
O6 C15 C16 O7 10.6(3)   C8 C9 C10 C11 –173.67(16) 
O6 C15 C16 O8 –168.88(18)   C9 C10 C11 C12 179.94(17) 

 
The tests were repeated three times; disks impregnated 

with DMSO were also used (negative controls). All 
determinations are made in duplicate. After diffusion, the Petri 
dishes are then incubated in an oven for 18 to 24 hours at 37 °C. 
After incubation, the effect of the salt against the bacteria 
results in the appearance around the disc of a transparent 
circular zone reflecting the absence of bacterial growth, and 
then the zone of inhibition is measured. 
 

3. Results and discussion 
 
3.1. Synthesis 
 

Compound 1 was isolated from a one-step process 
according to Equation 1. Aqueous solutions of oxalate acid 
(H2C2O4) and n-hexylamine (HexNH2) were mixed at room 
temperature and stirred for 2 hours.  

 
 



254 Ba et al. / European Journal of Chemistry 16 (3) (2025) 251-258 
 

 
2025 – European Journal of Chemistry – CC BY NC – DOI: 10.5155/eurjchem.16.3.251-258.2698 

 

 
 

Figure 2. FT-IR spectrum (ATR mode) of salt 1. 
 

 
 

Figure 3. UV-vis absorption spectrum in H2SO4 solution (2 N) of salt 1. 
 

    (1) 

 
Single colorless crystals, suitable for XRD analysis, were 

collected from the supernatant solution and then characterized 
as [HexNH3]2[HC2O4]2·H2O (1). The yield of the reaction 
reported here is 74%, respectively. 
 
3.2. FT-IR and UV-vis analyses 
 

Crystals of salt 1 were first investigated by room 
temperature solid-state FT-IR spectroscopy in ATR mode. The 
spectrum recorded in the 4000-400 cm-1 range is shown in 
Figure 2. Characteristic absorption bands were assigned on the 
basis of previous data available in the literature [35-37]. The 
broad bands located at 3341 and 3042 cm–1 are assigned to 
ν(O–H) and ν(N-H) absorption bands, respectively. The bands 
at 2955, 2928 and 2857 cm–1 reflect ν(C–H) vibrations. The 
vibration bands at 1722 and 1687 cm–1 can be attributed to 
carbonyl absorptions. The νas(COO–) and νs(COO–) can be 
observed at 1602 and 1398 cm-1, while the symmetric angular 
deformation of the –NH3+ group is revealed by a sharp band at 
1517 cm–1. The strong band, isolated at 1217 cm–1, displays the 
elongation vibration of the C–C(O)–O group. Intense band at 

704 cm–1 is attributed to O-C=O in plane bending vibrations and 
that at 481 cm–1 to O–C=O out of plane bending vibrations [38]. 

The UV-vis spectrum of the compound in H2SO4 solution (2 
N) shows the presence of a single very strong electronic 
absorption band around 295 nm (Figure 3). This band is 
characteristic of the n → π* transition of the COO− carboxylate 
group of the oxalate anion [39]. 
 
3.3. Single-crystal X-ray diffraction 
 

The asymmetric unit of the title salt is formed by two 
HexNH3+ cations, two HC2O4− hydrogen oxalate anions and one 
water molecule. The crystal structure of the salt 1 components 
is shown in Figure 4. The two HC2O4− are positioned parallel to 
each other, with their OH groups pointing in opposite 
directions. The orientation of HexNH3+ cations with respect to 
HC2O4− anions can be considered close to orthogonality. The 
dihedral angles between the planes involving N1-C1-C6 and O5-
O8-C15-C16, and N2-C7-C12 and O1-O4-C13-C14 are 84° and 
71°, respectively. The NH3+ groups of the two cations face each 
other. The values of the N-C bonds are identical of those 
reported by Thomas in [Me2NH2]+[HC2O4]− [40].  
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Figure 4. Crystal structure of salt 1 showing 30% probability ellipsoids for non-H atoms and the crystallographic numbering scheme (OLEX2 view) [atom color 
code: C, gray; H, white; N, blue; O, red]. 

 

 
 
Figure 5. Molecular view along the b-axis of the hydrogen bonds (azure dash) involving HC2O4−, H2O and HexNH3+ (color code: blue-nitrogen, red-oxygen, grey-
carbon, white-hydrogen). 

A large number of structures involving alkylammonium 
cations are referenced in the CCDC structural database. To our 
knowledge, to date, 105 hits describe the presence of n-
hexylammonium moieties. Several of these concerns the 
preparation of organic salts devoted to various purposes. For 
example, Rogers et al previously reported [C6H13NH3]+[C2H3O2]– 
(CCDC code = QEYCII, 908843) with ionic liquid properties [41], 
Han et al. published [C6H13NH3]+[C4HO4]–·½(H2O) (CCDC code = 
UWASIX, 2087245) as 2D hydrogen-bonded molecular 
materials [42] and Dastidar et al. have deposited [C6H13NH3]2+ 

[C6H6O4]2– (CCDC code = JEKJAL, 285967) with the aim of 
designing nanotubular architectures [43]. The isolation of salt 
1 and the resolution of its X-ray structure provides a new 
example of an organic salt based on the n-hexylammonium 
cation, once again demonstrating the ability of 
alkylammoniums to promote hydrogen bonding interactions. 

From a supramolecular point of view, interestingly, all 
components of salt 1 are interconnected, linked via N-H···O and 
O-H···O intermolecular hydrogen bonds leading to a complex 
three-dimensional network. Each NH3+ group of the n-
hexylammonium cation interacts by hydrogen bonding with 
two oxygen atoms of two distinct hydrogen oxalate anion (N1-
H ··O7 = 2.8103(18) Å, N1-H ··O8 = 2.8327(19) Å, N2-H ··O2 = 

2.837(2) Å, N2-H ··O3 = 2.8064(19) Å) and with the water 
molecule that co-crystallized within salt 1 (N1-H ··O9 = 
2.7787(19) Å, N2-H ··O9 = 2.785(2) Å) (Figure 5). Thus, the 
distances of the N-H ··O hydrogen bonds are shorter in the case 
of water molecules than in the case of hydrogen oxalates. In 
both cases, these values are comparable to those described 
previously in the literature [18-20]. In addition, the two 
hydrogen oxalates present in salt 1 are also linked together. 
They form via O–H···O interactions (O1-H···O3 = 2.5857(16) Å, 
O5-H···O7 = 2.5884(16) Å), two parallel offset strands 
propagating along the b-axis. The result is an organization that 
can be compared to channel formation, joined along the a axis 
by water molecules in hydrogen bonding interaction and that 
bridge hydrogen oxalates of two distinct strands (Figure 6). 
(O9-H···O8 = 2.7334(17) Å, O9-H···O2 = 2.7307(17) Å). The 
carbon chains of HexNH3+ cations are also aligned and 
positioned almost perpendicular to hydrogen oxalate-based 
channels. A representation of the final supramolecular 
architecture of salt 1 is shown in Figure 7. 
 
 

 
 



256 Ba et al. / European Journal of Chemistry 16 (3) (2025) 251-258 
 

 
2025 – European Journal of Chemistry – CC BY NC – DOI: 10.5155/eurjchem.16.3.251-258.2698 

 

 
Figure 6. Focus on the channel-shaped structure. Hydrogen bonds are represented by azure dashes (color code: blue−nitrogen, red-oxygen, grey-carbon, white-
hydrogen). 
 

 
 
Figure 7. Molecular view along the a-axis of the resulting supramolecular network. Hydrogen bonds are highlighted by azure dashes (color code: blue-nitrogen, 
red-oxygen, grey-carbon, and white-hydrogen). 
 

 
 
Figure 8. Inhibition zone test of the title compound in a Gram-positive bacterial species (Streptomyces) extracted from a potato in the St-Louis/Senegal area (left: 
before incubation, right: after 24 hours incubation). 

3.4. Antibacterial activity study 
 

The antibacterial activity of salt 1 against Streptomyces was 
tested with three increasing concentrations: 6, 10 and 20 
mg/mL. As shown in the pictures in Figure 8, an inhibition zone 
is observed from the lowest concentration value. Salt 1 clearly 
exhibits very significant antibacterial activity against 
Streptomyces. The 20 mg/mL concentration again increased the 
impact on bacterial growth, leading to a higher zone of 
inhibition (Figure 9). According to Cho et al., we can conclude 

that at concentrations of 6 and 10 mg/mL, Streptomyces are 
very sensitive to salt 1 and become extremely sensitive with a 
concentration of 20 mg/mL [44]. As far as the bactericidal 
action of salt 1 is concerned, we can at this stage try to explain 
it by: (i) the presence of several donor atoms (oxygen and 
nitrogen) in the molecule, which gives it good stability, and (ii) 
the ability of the oxalate anion to be an easy and versatile ligand 
that can lead to different coordination modes (monodentate, 
bidentate or chelating). 
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Figure 9. Antibacterial activity of [HexNH3]2[C2O4]2·H2O (1) against streptomyce (Gram-positive bacteria). 
 
4. Conclusions 
 

With antimicrobial resistance increasing, the development 
of new, effective organic and inorganic compounds is a growing 
challenge that needs to be addressed urgently.  Streptomyces 
bacterium is one of the main bacterial species that cause serious 
problems for Senegalese agriculture, as it attacks potato and 
mango leaves, severely reducing harvests. In this study, we 
describe the synthesis and structural characterization of a new 
organic salt, identified as [HexNH3]2[HC2O4]2·H2O (1), showing 
in the solid state a highly developed hydrogen bonding 
network. The antibacterial activity of this compound was also 
tested, demonstrating its inhibitory action against Streptomyces 
bacteria. In the future, we will continue this work to better 
understand the possible correlation that may exist between the 
molecular and supramolecular structures of the organic salt 
and their impact on antimicrobial activity. 
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