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Scheme	1

	
	
The	reduction	products	are	the	respective	sulfonamide	and	

NaCl	or	HCl.	The	prominent	member	of	this	class	of	compounds,	
sodium	 N‐chloro‐4‐methylbenzenesulfonamide,	 commonly	
known	 as	 chloramine‐T	 (CAT;	 p‐CH3C6H4SO2NClNa.3H2O)	 is	 a	
by‐product	 of	 saccharin	 manufacture.	 The	 redox	 potential	 of	
chloramine‐T/p‐toluenesulfonamide	is	pH	dependent	[11]	and	
decreases	with	increase	in	pH	of	the	medium	(1.139	V	at	pH	=	
0.65,	1.778	V	at	pH	=	7.0	and	0.614	V	at	pH	=	9.7).	The	nature	of	
active	 oxidizing	 species	 of	 CAT	 depends	 on	 the	 pH	 of	 the	
medium	and	 the	reaction	condition.	 	Chloramine‐T	 is	a	source	
of	 positive	 halogen	 and	 this	 reagent	 has	 been	 exploited	 as	
oxidant	 for	 a	 variety	 of	 substrates	 in	 both	 acidic	 and	 alkaline	
media	 [10,11,14‐20].	 Although	 a	 large	 numbers	 of	 various	
substrates	 have	 been	 oxidized	 by	 CAT,	 very	 few	 oxidation	
kinetic	 investigations	of	dyes	have	been	carried	out	with	CAT.	
Preliminary	experimental	results	revealed	that	the	oxidation	of	
carmosine	 by	 CAT	 in	 alkaline	 medium	 is	 too	 slow	 to	 be	
measured	but	 the	reaction	 is	 facile	 in	 the	presence	of	an	acid.	
Hence,	the	present	kinetic	investigations	have	been	carried	out	
in	acid	medium.	

In	the	 light	of	available	 information	and	in	continuation	of	
our	 research	 interest	 in	 the	 kinetic	 and	 mechanistic	
investigations	of	oxidation	of	various	substrates	in	general	and	
dyes	 in	 particular	 by	 CAT,	 the	 title	 reaction	 was	 undertaken.	
Consequently,	in	this	communication	we	report	on	the	detailed	
kinetics	of	carmosine	oxidation	by	CAT	in	HClO4	medium	at	297	
K	 in	 order	 to	 (i)	 elucidate	 a	 plausible	mechanism,	 (ii)	 design	
appropriate	 kinetic	model,	 (iii)	 ascertain	 the	 reactive	 species,	
(iv)	 characterize	 the	 oxidation	 products	 and	 (v)	 develop	 an	
optimum	condition	for	the	facile	oxidation	of	the	substrate.	
	
2.	Experimental		
	
2.1.	Materials	
	

CAT	 (Merck)	 was	 purified	 by	 the	method	 of	 Morris	 et	 al.	
[21].	An	aqueous	solution	of			CAT	was	prepared,	standardized	
iodometrically	 and	 stored	 in	 amber	 colored	 stoppered	bottles	
until	 further	 use.	 The	 concentrations	 of	 stock	 solutions	 were	
periodically	determined.	Carmosine	 (S.D.	Fine‐Chem	Ltd.)	was	
of	 acceptable	 grade	 of	 purity	 and	 was	 used	 as	 received.	 An	
aqueous	solution	of	carmosine	was	freshly	prepared	whenever	
required.	 Solvent	 isotope	 studies	were	made	 in	 D2O	 (99.24%	
purity)	medium	 supplied	 by	 Bhabha	 Atomic	 Research	 Centre,	
Mumbai,	 India.	 Reagent	 grade	 chemicals	 and	 doubly	 distilled	
water	were	used	throughout.		
	
2.2.	Kinetic	measurements	
	

The	kinetic	runs	were	performed	under	pseudo	first‐order	
conditions	with	a	known	excess	of	the	[CAT]o	over	[carmosine]o	

at	 303	 K	 using	 a	 UV–visible	 spectrophotometer	 (Digital	
Spectrophotometer	 166,	 Systronics,	 India).	 In	 the	 present	
study,	 the	 kinetic	 experiments	were	 carried	 out	 between	288	
and	313	K.	For	this	purpose,	a	Raaga	Ultra	Cold	Chamber	with	
digital	 temperature	 control	 (India)	 was	 used.	 A	 constant	
temperature	 was	 maintained	 with	 an	 accuracy	 of	 ±	 0.1	 oC.	
Reactions	 were	 carried	 out	 in	 glass	 stoppered	 Pyrex	 boiling	
tubes	whose	outer	surfaces	were	coated	black	to	eliminate	any	
photochemical	effects.	The	oxidant	as	well	as	requisite	amounts	
of	dye	and	HClO4	solutions	and	water	(to	keep	the	total	volume	
constant	 for	 all	 runs)	 taken	 in	 separate	 tubes	 were	
thermostatted	 for	30	min	at	297	K.	The	reaction	was	 initiated	
by	 the	 rapid	addition	of	a	measured	amount	of	oxidant	 to	 the	
stirred	 reaction	 mixture.	 Immediately,	 the	 solution	 was	
pipetted	 into	 a	 cuvette	 placed	 in	 the	 spectrophotometer.	
Absorbance	measurements	were	made	at	λmax	of	carmosine	518	
nm	for	nearly	three	half	lives.	The	absorbance	readings	at	t	=	0	
and	t	=	t	are	D0	and	Dt.	Plots	log	D0/Dt	versus	time	were	made	to	
evaluate	the	pseudo‐first‐order	rate	constants	(k/)	which	found	
reproducible	 within	 ±4‐5%.	 Regression	 analysis	 of	 the	
experimental	 data	 was	 carried	 out	 on	 an	 fx‐100W	 scientific	
calculator	to	evaluate	the	regression	coefficient,	r.	
	
2.3.	Reaction	stoichiometry	
	

Reaction	 mixtures	 containing	 different	 ratios	 of	 CAT	 to	
carmosine	were	equilibrated	 at	297	K	 in	1.00	x	10‐4	mol/dm3	
HClO4	for	48	h.	Iodometric	titrations	of	unreacted	CAT	showed	
that	 one	 mole	 of	 carmosine	 consumed	 one	 mole	 of	 CAT	
confirming	the	stoichiometry	given	in	Scheme	1.	
	
2.4.	Product	analysis	
	

The	 reaction	mixture	 in	 1:1	 ratio	 under	 stirred	 condition	
was	allowed	 to	progress	 for	48	h	at	297	K.	After	 the	reaction,	
solution	 was	 neutralized	 with	 NaOH	 and	 the	 products	 were	
extracted	with	 ether.	 The	 organic	 products	were	 subjected	 to	
spot	 tests	 and	 chromatographic	 analysis	 (Thin	 layer	
chromatography	 (TLC)	 technique),	 which	 revealed	 the	
formation	of	oxidation	products,	namely	naphthalene	and	1,2‐
naphthoquinone.	These	oxidation	products	were	separated	by	
column	 chromatography	 and	 identified	 from	 their	 melting	
points:	80	oC	(Lit.	melting	point	(M.p.):	78‐80	oC	[8])	and	125	oC	
(Lit.	 M.p.:	 124‐126	 oC	 [8])	 for	 naphthalene	 and	 1,2‐
naphthoquinone,	 respectively.	 These	 two	 products	 were	
further	confirmed	by	GC‐MS	data	obtained	on	a	17A	Shimadzu	
gas	 chromatograph	 with	 a	 QP‐5050A	 Shimadzu	 mass	
spectrometer.	 The	 mass	 spectrum	 was	 obtained	 using	 the	
electron	impact	ionization	technique.	The	mass	spectra	showed	
parent	 molecular	 ion	 peaks	 at	 128	 and	 158	 amu,	 confirming	
naphthalene	 and	 1,2‐naphthaquinone,	 respectively	 (Figure	 1	
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no	 attempts	 were	 made	 to	 keep	 the	 ionic	 strength	 of	 the	
medium	constant	for	kinetic	runs.		
	
3.4.	Effect	of	dielectric	constant	of	the	medium	on	the	rate	
	

The	 dielectric	 constant	 (D)	 of	 the	medium	was	 varied	 by	
adding	 MeOH	 (0‐30	%;	 v/v)	 to	 the	 reaction	mixture	 with	 all	
other	 experimental	 conditions	 being	 held	 constant.	 The	 rate	
decreased	with	increase	in	MeOH	content	(Table	2,	Figure	4).	A	
plot	of	log	kˊ	versus	1/D	was	linear	(r	=	0.9978)	with	a	negative	
slope.	 It	was	 further	noticed	 that	 no	 reaction	of	 the	dielectric	
with	the	oxidant	under	the	experimental	conditions	employed.	
The	values	of	 the	dielectric	 constant	of	CH3OH	‐	H2O	mixtures	
reported	in	the	literature	[22]	were	employed.		
	
Table	2.	Effect	of	 varying	dielectric	 constant	 (D)	of	medium	on	 the	 rate	 of	
reaction	at	297	K*.	
%	MeOH	(v/v)	 D	 kˊ		x	104 	(s‐1)
0	 76.7	 4.81	
5	 74.5	 2.15	
10	 72.3	 1.04	
15	 69.7	 0.36	
20	 67.5	 0.13	
*	[CAT]o	=	8.00	x	10‐4		mol	dm‐3,	[carmosine]o	=	8.00	x	10‐5	mol	dm‐3,	[HClO4]	=	
4.00	x	10‐4	mol	dm‐3.	
	

 
	

Figure	4.	A	plot	of	log	kˊ	versus	1/D.	
	
3.5.	Effect	of	solvent	isotope	on	the	rate	
	

As	 the	 oxidation	 of	 carmosine	 by	 CAT	was	 accelerated	 by	
[H+],	 the	 solvent	 isotope	 effect	 was	 studied	 in	 D2O	 as	 the	
solvent	medium,	with	carmosine	as	a	probe.	Values	of	kˊ	(H2O)	
and	 kˊ	 (D2O)	were	 4.81	 x	 10‐4	 s‐1	 and	 4.96	 x	 10‐4	 s‐1,	 giving	 a	
solvent	isotope	effect	kˊ	(H2O)	/	kˊ	(D2O)	=	0.96.	
	
3.6.	Effect	of	temperature	on	the	rate	
	

The	effect	of	temperature	on	the	reaction	rate	was	studied	
by	 performing	 the	 kinetic	 runs	 in	 the	 range	 of	 288‐313	 K,	
keeping	 other	 experimental	 conditions	 constant.	 From	 the	
linear	Arrhenius	plot	of	log	kˊ	versus	1/T	(r	=	0.9930,	Figure	5),	
values	of	activation	parameters	(Ea,	∆H≠,	∆G≠,	∆S≠	and	log	A)	for	
the	overall	 reaction	were	evaluated.	These	data	are	presented	
in	Table	3.		
	
3.7.	Test	for	free	radicals	
	

Addition	 of	 the	 reaction	 mixture	 to	 the	 acrylamide	
monomer	 did	 not	 initiate	 polymerization,	 indicating	 the	
absence	 of	 free	 radicals	 in	 the	 reaction	 mixture.	 Control	
experiments	 performed	 with	 solutions	 containing	 all	 the	
components	 of	 the	 reaction	 mixture	 except	 the	 oxidant	 and	

with	 the	 individual	 oxidant	 solutions	 were	 found	 to	 be	
negative.	
	
Table	3.	Temperature	dependence	on	the	reaction	rate	and	activation	
parameters	for	the	oxidation	of	carmosine	by	CAT	acid	medium.	
Temperature	(K) kˊ		x	104		(s‐1)	
288 1.84	
293 3.16	
297 4.81	
307 12.6	
313 23.4	
Ea	(kJ	mol‐1) 71.7	
ΔH≠ (kJ	mol‐1) 69.2	
ΔG≠	(kJ	mol‐1)	 91.8	
ΔS≠	(JK‐1	mol‐1)	 ‐75.4	
[CAT]o	=	8.00	x	10‐4	mol	dm‐3;	[carmosine]o	=	8.00	x	10‐5	mol	dm‐3;	[HClO4]	=	
4.00	x	10‐4	mol	dm‐3.		
	

 
	

Figure	5. Arrhenius	plot	of	log	kˊ	versus	1/T.	
	
3.8.	Reactive	species	of	Chloramine‐T	
	

Chloramine‐T	 (TsNClNa)	 behaves	 as	 a	 strong	 electrolyte	
[21]	 in	 aqueous	 solutions,	 and	 depending	 upon	 the	 pH	 of	 the	
medium,	 it	 furnishes	 the	following	types	of	reactive	species	 in	
solutions	(Equilibrium	1‐7).	

Chloramine‐T	 dissociates	 according	 to	 Equilibrium	 1	 in	
aqueous	 solution.	 The	 anion	 picks	 up	 a	 proton	 in	 acid	
(Equilibrium	 2)	 to	 give	 the	 free	 acid	 TsNHCl.	 It	 undergoes	
disproportionation	 [23‐25]	 via	 Equilibrium	 3	 giving	 rise	 to	
dichloramine‐T	 and	 the	 parent	 amide.	 The	 free	 acid	 and	
dichloramine‐T	 undergo	 hydrolysis	 (Equilibrium	 4	 and	 5).	
Finally	 the	hypohalous	acid	undergoes	 ionization	according	to	
Equilibrium	6.	Possibly	the	hypohalous	acid	with	a	proton	gives	
H2OCl+	 species	 (Equilibrium	 7	 and	 8).	 Consequently,	 the	
possible	 oxidizing	 species	 in	 acidified	 CAT	 solutions	 are	
TsNHCl,	TsNCl2,	HOCl	and	perhaps	H2OCl+.	
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Absence	of	a	retardation	effect	by	the	p‐toluenesulfonamide	
rules	 out	 the	 involvement	 of	 HOCl	 in	 the	 reaction	 sequence.	
Bishop	and	 Jennings	 [23]	have	 shown	 in	 aqueous	solutions	of	
CAT,	at	pH	>	3,	the	concentration	of	anion	TsNCl‐	is	greater	than	
that	 of	 the	 free	 acid.	 Hence	 the	 protonation	 Equilibrium	 2	
involving	the	anion	can	be	assumed	in	aqueous	acidic	solution.	
	
3.9.	Reaction	scheme	
	

In	 the	 present	 investigations,	 the	 conjugate	 free	 acid	
TsNHCl	 is	 assumed	 to	be	most	 active	oxidizing	 species.	Based	
on	the	preceding	discussion	and	experimental	 facts,	Scheme	2	
is	 proposed	 to	 explain	 the	 reaction	 mechanism	 for	 the	
oxidation	of	carmosine	by	CAT	in	HClO4	medium.	

Dyes	 such	 as	 carmosine	 containing	 hydroxyl	 groups	
conjugated	to	azo	group	exhibit	azo‐hydrazone	tautomerism	as	
shown	in	Scheme	3.	
	

 
	

Scheme	3 
	

In	the	present	case,	the	azo	form	of	the	dye	reacts	with	the	
conjugate	acid	of	the	oxidant	to	form	a	substrate‐CAT	complex	
(X)	with	the	elimination	of	TsNH2.	The	complex	in	acid	medium	
undergoes	 protodesulfonation	 followed	 by	 hydrolysis	 and	
cleavage	of	azo	bond	to	yield	the	ultimate	products	naphthalein	
and	1,2‐naphthaquinone	as	shown	in	Scheme	4.	
	
3.10.	Kinetic	rate	law	
	

A	detailed	mode	of	oxidation	of	 carmosine	by	CAT	 in	acid	
medium	 is	 depicted	 in	 Scheme	 4,	 where	 the	 structure	 of	 the	
intermediate	 complex	X	 is	 shown.	 In	 a	 fast	 initial	 equilibrium	
(step	 (i)	 of	 Scheme	 2),	 the	 anion	 TsNCl‐,	 in	 acid	 accelerating	
step	generates	the	active	oxidizing	species	TsNHCl.		

In	 a	 slow	 /	 rate	 limiting	 step	 (step	 (ii)),	 the	 lone	 pair	 of	
electrons	on	oxygen	of	carmosine	attacks	the	positive	chlorine	
of	TsNHCl	forming	an	intermediate	species	X.	This	intermediate	
complex	X	(step	(iii))	undergoes	hydrolysis	followed	by	several	
fast	 steps	 leading	 to	 the	 formation	 of	 naphthaquinone	 and	
naphthalene	as	end	products.	

If	 [CAT]t	 represents	 the	total	concentration	of	 the	oxidant,	
then	from	steps	(i)	and	(ii)	of	Scheme	2,	
	
[CAT]t	=[TsN‐Cl]	+	[TsNHCl]	 	 	 	 (8)	
	

By	 substituting	 [TsN‐Cl]	 from	 step	 (i)	 of	 Scheme	 2,	 into	
Equation	8	and	solving	for	[TsNHCl],	one	gets,	
	

ሾTsNHClሿ ൌ
K1ሾCATሿtሾHሿ

1K1ሾHሿ
	 	 	 	 (9)	

	
From	 the	 slow	 and	 rate	 determining	 step	 (step	 (ii)	 of	

Scheme	2),	
	
Rate	=	k2	[TsNHCl]	[carmosine]		 	 	 (10)	
	

By	substituting	for	[TsNHCl]	from	Equation	9	into	Equation	
10,	the	following	rate	law	is	obtained:	
	

Rate	ൌK1k2ሾCATሿtሾCarmosineሿሾH
ሿ

1K1ሾH
ሿ

		 	 	 (11)	

	
	

The	 derived	 rate	 law	 (Equation	 11)	 is	 in	 good	 agreement	
with	 the	 experimental	 results,	 wherein	 a	 first	 order	
dependence	 of	 rate	 on	 each	 [CAT]o	 and	 [carmosine]o	 and	 a	
fractional	order	dependence	on	[H+].	

Since	 rate	 =	 [CAT]t,	 Equation	 11	 can	 be	 transformed	 into	
Equation	12.	
	
ଵ

୩ˊ
	ൌ ଵ

K1k2ሾCarmosineሿሾHሿ
 ଵ

k2ሾCarmosineሿ
				 	 (12)	

	
A	 plot	 of	 1/kˊ	 versus	 1/[carmosine]	 passes	 through	 the	

origin	confirming	observed	kinetics.	Further	from	the	slope	and	
intercept	 of	 the	 linear	 plot	 of	 1/kˊ	 versus	 1/[H+],	 values	 of	
protonation	constant	 (K1)	 and	dissociation	constant	 (k2)	were	
found	 to	 be	 2.612	 x	 105	 dm3/mol	 and	 208.3	 dm3/mol.s,	
respectively.	
	
3.11.	Effect	of	dielectric	constant	
	

Several	 approaches	 have	 been	 put	 forward	 to	 explain	
quantitatively	 the	 effect	 of	 the	 dielectric	 constant	 of	 the	
medium	on	the	rates	of	reactions	in	solutions.	For	the	limiting	
case	of	zero	angle	of	approach	between	two	dipoles	or	an	ion‐
dipole	system,	Amis	[26]	has	shown	that	a	plot	of	log	kˊ	against	
1/D	 gives	 a	 straight	 line	with	 a	 negative	 slope	 (Figure	 4;	 r	 >	
0.9943)	for	the	reaction	between	a	negative	ion	and	a	dipole	or	
between	two	dipoles,	while	a	positive	slope	indicates	a	reaction	
between	 a	 positive	 ion	 and	 a	 dipole.	 The	 negative	 dielectric	
effect	in	the	present	studies	is	in	agreement	with	dipole‐dipole	
nature	of	 the	rate‐limiting	step	 in	the	proposed	Scheme	4	and	
the	 reaction	 pathways	 are	 suggested	 to	 explain	 the	 kinetic	
results.	
	
3.12.	Solvent	isotope	studies	
	

Reactions	in	aqueous	medium	that	are	susceptible	to	acid‐
base	 catalysis	 have	 been	 studied	 in	 heavy	 water	 (D2O)	 after	
equilibrium.	 Since	 most	 oxidation	 reactions	 of	 organic	
compounds	 involve	 the	 cleavage	 of	 C‐H	 bond,	 deuterium	
isotope	effect	on	such	reactions	gives	information	regarding	the	
nature	 of	 the	 rate	 limiting	 step.	 In	 the	 present	 investigations,	
solvent	isotope	studies	have	shown	that	the	rate	of	reaction	is	
higher	 in	 D2O	 medium.	 For	 a	 reaction	 involving	 a	 fast	
equilibrium	with	H+	 or	 OH‐	 ion	 transfer,	 the	 rate	 increases	 in	
D2O	 medium	 since	 D3O+	 and	 OD‐	 are	 a	 stronger	 acid	 and	 a	
stronger	base	respectively,	than	H3O+	and	OH‐	ions	[27‐28].	The	
observed	solvent	isotope	effect	of	kˊ	(H2O)	/	kˊ	(D2O)	<	1	is	due	
to	 the	greater	acidity	of	D3O+	compared	to	H3O+.	However,	 the	
magnitude	 of	 increase	 in	 rate	 in	D2O	 is	 small	 as	 compared	 to	
the	expected	value	which	is	2‐3	times	greater.	This	may	be	due	
to	 the	 fractional	order	dependence	of	 the	 rate	on	 [H+].	Hence,	
this	observation	supports	the	proposed	mechanism.	

The	 negligible	 influence	 of	 variation	 of	 ionic	 strength	 and	
addition	 of	 p‐toluenesulfonamide	 and	 halide	 ions	 are	 in	
agreement	 with	 the	 proposed	 mechanism.	 The	 proposed	
mechanism	is	also	supported	by	the	moderate	value	of	energy	
of	 activation	 and	 other	 thermodynamic	parameters	 (Table	 3).	
The	fairly	high	positive	values	of	ΔG≠	and	ΔH≠	 indicate	that	the	
transition	state	is	highly	solvated	while	the	negative	entropy	of	
activation	 reflects	 the	 formation	 of	 a	 compact	 and	 ordered	
transition	 state.	 Further,	 the	 experimental	 observation	 shows	
that	there	is	no	effect	of	p‐toluenesulfonamide,	halide	ions	and	
ionic	strength	on	the	reaction	rate	which	also	substantiates	the	
proposed	mechanism.		

In	the	present	redox	system	the	optimum	conditions	for	the	
controlled	oxidation	of	 carmosine	by	CAT	 to	naphthalene	 and	
1,2‐naphthaquinone	 were	 established	 in	 acid	 medium.	 These	
products	 are	 largely	 used	 in	 the	 syntheses	 of	 naphthalene	
analogues	 such	 as	 naphthols	 and	 naphthalene	 sulfonic	 acid,	
which	are	widely	used	in	dyestuff	industries.	Consequently,	this	
redox	system	can	be	scaled	up	to	industrial	operation.		
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Scheme	4
	
	
Furthermore,	 carmosine	 is	one	of	 the	chief	components	 in	

the	 effluents	 of	 various	 industries	 and	 is	 environmentally	
hazardous	and	also	carcinogenic	compound.	Hence,	the	present	
simple	 method	 developed	 can	 be	 adopted	 for	 treating	 the	
carmosine	dye	present	in	industrial	effluents	to	reduce	toxicity	
caused	by	this	dye.	Also,	this	method	offers	several	advantages	
including	short	reaction	time,	ease	of	isolation	of	products,	cost	
effective	 and	 relatively	 non‐toxic	 reagents	 which	 make	 the	
reaction	process	simple,	elegant	and	environmentally	benign.			
	
	

4.	Conclusions	
	

The	kinetics	of	oxidation	of	 carmosine	by	chloramine‐T	 in	
acid	 medium	 obeys	 the	 rate	 law	 –d[CAT]	 /	 dt	 =	 k	 [CAT]o	
[Carmosine]o	 [acid]0.60.	 Oxidation	 products	 were	 identified	 by	
GC‐MS	 analysis.	 The	 present	 method	 developed	 for	 the	
oxidative	 decolorization	 of	 carmosine	with	CAT	 offers	 several	
advantages	 including	 cost	 effective	 and	 relatively	 non‐toxic	
reagents,	which	make	the	reaction	process	simple,	smooth	and	
environmentally	 benign.	 Furthermore,	 the	 simple	 and	 elegant	
method	developed	 in	 the	present	research	can	be	adopted	 for	



118	
	
treating	 the	 c
minimize	the	t
	
Acknowledgem
	

One	 of	 th
thanks	the	Pri
of	Technology
	
References	
	
[1]. Zollinger,	

of	organic
[2]. Perkowsk
[3]. Waters,	 B

Dyers	and
[4]. Pearce,	 C.

196.	 		
[5]. Umbuzeir

Terao,	Y.;	
[6]. Oakes,	J.;	G
[7]. Puttaswam

32,	991‐99
[8]. Puttaswam

138.		
[9]. Vinod,	K.	

2044‐205
[10]. Campbell,
[11]. Banerji,	K

65‐76.		
[12]. Agarwal,	M
[13]. Armesto,	

1998,	27,	
[14]. Kolvari,	E.

M.	A.	J.	Ira
[15]. Murthy,	A
[16]. Rangappa

M.	Int.	J.	Ch
[17]. Kambo,	N

509.		
[18]. Saldanha,	

Struct.	200
[19]. Hegde,	A.	
[20]. Puttaswam

Catal.	A:	C
[21]. Morris,	J.	

2036‐204
[22]. Akerloff,	G
[23]. Bishop,	E.;
[24]. Hardy,	F.	F
[25]. Pryde,	B.	G
[26]. Amis,	E.	S

Press,	New
[27]. Collins,	C.	

Nostrand	
[28]. Kohen,	A.;

Press,	Flor
	
	

carmosine	 dye	
toxicity	caused	

ments	

e	 authors	 (Jay
incipal	and	the	
y	for	the	facilitie

H;	Colour	chemist
c	dyes	and	pigment
ki,	J.;	Ledakowicz,	S
.	 D.;	 Colour	 in	Dy
d	Colourists,	Bradfo
	 I.;	 Lloyd,	 J.	 R.;	 Gu

o,	G.	D.	A.;	Freema
Watanabe,	T.;	Clax
Gratton,	P.	J.	Chem.
my;	Shubha,	 J.	P.;	 J
99.		
my;	Vinod,	K.	N.;	N

N.;	Puttaswamy;	N
1.		
	M.	M.;	Johnson,	G.	
.	K.;	Jayaram,	B.;	M

M.	C.;	Upadhyay,	S.	
X.	 L.;	 Canle,	 L.;	 G
453‐460.		
.	E.;	Ghorbani‐Chog
an.	Chem.	Soc.	2007
A.	R.	V.;	Rao,	B.	S.	Pr
a,	K.	S.;	Manjunatha
hem.	Kinet.	2002,	3
.;	Upadhyay,	S.	K.;

R.	J.	D.;	Ananda,	S.
02,	606,	147‐154.		
C.;	Gowda,	B.	T.	Ox
my;	 Jagadeesh,	 R.	
Chem.	2005,	229,	21
C.;	Salazar,	J.	A.;	W
1.		
G.	J.	Am.	Chem.	Soc.	
;	Jennings,	V.	J.	Tal
F.;	Johnston,	J.	P.	J.	
G.;	Soper,	F.	G.	J.	Ch
.	Solvent	effects	on
w	York,	1966,	pp.	1
J.;	Bowman	M.	N.	
Reinhold,	New	Yor
	Limbach,	H.	H.	Iso
rida,	2006,	pp.	827

Shubha	an

present	 in	 ind
by	this	dye.		

achamarajapur
Management,	
es	and	encourag

try:	Synthesis,	pro
ts,	New	York,	VCH,
S.	Fibres	Text	East	E
ehouse	 Effluent,	 C
ord,	1995.		
uthrie,	 J.	 T.	Dyes	P

an,	H.	S.;	Warren,	
xton,	L.	D.	Chemosp
	Soc.	Perkin	Trans	
Jagadeesh,	R.	V.	Tr

inge,	G.	K.	N.	Dyes	

Ninge,	G.	K.	N.	 Inor

	Chem.	Rev.	1978,	
Mahadevappa,	D.	S.	

K.	J.	Sci.	Ind.	Res.	1
Garia,	 M.	 V.;	 Santa

gamarani,	A.;	Saleh
7,	4,	126‐174.		
roc.	Indian	Acad.	Sc
aswamy,	K.;	Ragha
34,	49‐55.		
;	 Jain,	A.	K.	Oxid.	C

;	Venkatesha,	B.	M

xid.	Commun.	2000
V.;	 Nirmala,	 V.;	 R
11‐220.	 	
Wineman,	M.	A.	J.	A

1932,	54,	4125‐41
anta	1959,	1,	197‐
Chem.	Soc.,	Perkin	
hem.	Soc.	1931,	151
	reaction	rates	and
1672.		
Isotope	effects	in	
rk,	1970,	pp.	267.		
otope	effects	in	che
7.		

	

nd	Puttaswamy /

dustrial	 effluen

ra	 Pranesh	 Shu
Don	Bosco	Inst
gement.	

perties	and	applic
	1981.	
Eur.	2002,	38(3),	7
Cooper,	 P.	 Ed.	 Soci

Pigments	2003,	58

S.	H.;	De	Oliveira,
phere	2005,	60,	55‐
2	1998,	2201‐220
rans.	Metal	Chem.	

Pigments	2008,	78

rg.	Chim.	Acta	200

78,	65‐79.		
J.	Sci.	Ind.	Res.	198

1990,	49,	13‐32.		
balla,	 J.	 Chem.	 Soc

hi,	P.;	Shirini,	F.;	Zo

ci.	1952,	35,	69‐70.
avendra,	M.	P.;	Gow

Commun.	2003,	26

M.;	Gowda,	N.	M.	M.	

0,	23,	546‐564.		
Radhakrishna,	 A.	 J

Am.	Chem.	Soc.	194

139.		
‐212.		
Trans.	2	1973,	742
14‐1418.		
d	mechanisms,	Aca

chemical	reaction

emistry	and	biolog

/	European	Journ

nts	 to	

ubha)	
titute	

cations	

2‐77.		
iety	 of	

8,	 179‐

,	D.	P.;	
‐64.	 	
06.		
2007,	

8,	131‐

09,	32,	

87,	46,	

c.	 Rev.	

olfigol,	

.		
wda,	N.	

6,	502‐

J.	Mol.	

J.	Mol.	

48,	70,	

2‐746.		

ademic	

ns,	Van	

gy,	CRC	

nal of Chemistry	3 (1)	(2012) 1122‐118	


