European Journal of Chemistry

Design, synthesis and molecular docking studies of some morpholine linked thiazolidinone hybrid molecules



Main Article Content

Javeed Ahmad War
Santosh Kumar Srivastava
Savitri Devi Srivastava

Abstract

A novel series of morpoline linked thiazolidione hybrid molecules targeting bacterial enoyl acyl carrier protein (Enoyl-ACP) reductase were designed and synthesized through a three step reaction protocol, which involves simple reaction setup and moderate reaction conditions. The synthesized molecules were characterized with FT-IR, 1H NMR, 13C NMR and HRMS techniques. In vitro susceptibility tests against some Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) gave highly promising results. Most of the molecules were found to be active against the tested bacterial strains. The most potent molecule (S2B7) gave MIC value of 2.0 µg/mL against Escherichia coli that was better than the reference drug streptomycin. Structure activity relationship showed nitro and chloro groups are crucial for bioactivity if present at meta position of arylidene ring in designed molecules. Molecular docking simulations against multiple targets showed that the designed molecules have strong binding affinity towards Enoyl-ACP reductase. Binding affinity of -8.6 kcal/mol was predicted for S2B7. Van der Waals forces, hydrogen bonding and hydrophobic interactions were predicted as the main forces of interaction.


icon graph This Abstract was viewed 1775 times | icon graph Article PDF downloaded 778 times

How to Cite
(1)
War, J. A.; Srivastava, S. K.; Srivastava, S. D. Design, Synthesis and Molecular Docking Studies of Some Morpholine Linked Thiazolidinone Hybrid Molecules. Eur. J. Chem. 2016, 7, 271-279.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Scheffler, R.; Colmer, S.; Tynan, H.; Demain, A.; Gullo, V. Appl. Microbiol. Biotechnol. 2013, 97, 969-978.
http://dx.doi.org/10.1007/s00253-012-4609-8

[2]. Boucher, H. W.; Talbot, G. H.; Bradley, J. S.; Edwards, J. E.; Gilbert, D.; Rice, L. B.; Scheld, M.; Spellberg, B.; Bartlett, J. Clin. Infect. Dis. 2009, 48, 1-12.
http://dx.doi.org/10.1086/595011

[3]. Brandt, C.; Makarewicz, O.; Fischer, T.; Stein, C.; Pfeifer, Y.; Werner, G.; Pletz, M. W. Int. J. Antimicrob. Agents 2014, 44, 424-430.
http://dx.doi.org/10.1016/j.ijantimicag.2014.08.001

[4]. Cohen, M. L. Science 1992, 257, 1050-1055.
http://dx.doi.org/10.1126/science.257.5073.1050

[5]. Gagliotti, C.; Balode, A.; Baquero, F.; Degener, J.; Grundmann, H.; Gür, D.; Jarlier, V.; Kahlmeter, G.; Monen, J.; Monnet, D. Euro. Surveill. 2011, 16(11), 1-5.

[6]. Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Interdiscip Perspect Infect Dis. 2014, 2014, ID: 541340, 1-7.

[7]. Woolhouse, M. E.; Ward, M. J. Science 2013, 341, 1460-1461.
http://dx.doi.org/10.1126/science.1243444

[8]. Lowy, F. D. J. Clin. Invest. 2003, 111, 1265-1273.
http://dx.doi.org/10.1172/JCI18535

[9]. Rice, L. B. Am. J. Infect. Control 2006, 34, S11-S19.
http://dx.doi.org/10.1016/j.ajic.2006.05.220

[10]. Organization, W. H. World Health Organization, 2014.

[11]. Norrby, S. R.; Nord, C. E.; Finch, R. Lancet Infect. Dis. 2005, 5, 115-119.
http://dx.doi.org/10.1016/S1473-3099(05)70086-4

[12]. Micheli, F.; Cremonesi, S.; Semeraro, T.; Tarsi, L.; Tomelleri, S.; Cavanni, P.; Oliosi, B.; Perdonà, E.; Sava, A.; Zonzini, L. Bioorg. Med. Chem. Lett. 2016, 26, 1329-1332.
http://dx.doi.org/10.1016/j.bmcl.2015.12.081

[13]. Panneerselvam, P.; Nair, R. R.; Vijayalakshmi, G.; Subramanian, E. H.; Sridhar, S. K. Eur. J. Med. Chem. 2005, 40, 225-229.
http://dx.doi.org/10.1016/j.ejmech.2004.09.003

[14]. Shcherbatiuk, A. V.; Shyshlyk, O. S.; Yarmoliuk, D. V.; Shishkin, O. V.; Shishkina, S. V.; Starova, V. S.; Zaporozhets, O. A.; Zozulya, S.; Moriev, R.; Kravchuk, O. Tetrahedron 2013, 69, 3796-3804.
http://dx.doi.org/10.1016/j.tet.2013.03.067

[15]. Bissantz, C.; Kuhn, B.; Stahl, M. J. Med. Chem. 2010, 53, 5061-5084.
http://dx.doi.org/10.1021/jm100112j

[16]. Morgenthaler, M.; Schweizer, E.; Hoffmann‐Röder, A.; Benini, F.; Martin, R. E.; Jaeschke, G.; Wagner, B.; Fischer, H.; Bendels, S.; Zimmerli, D. Chem. Med. Chem. 2007, 2, 1100-1115.
http://dx.doi.org/10.1002/cmdc.200700059

[17]. Ndungu, J. M.; Krumm, S. A.; Yan, D.; Arrendale, R. F.; Reddy, G. P.; Evers, T.; Howard, R.; Natchus, M. G.; Saindane, M. T.; Liotta, D. C. J. Med. Chem. 2012, 55, 4220-4230.
http://dx.doi.org/10.1021/jm201699w

[18]. Andrs, M.; Korabecny, J.; Jun, D.; Hodny, Z.; Bartek, J.; Kuca, K. J. Med. Chem. 2014, 58, 41-71.
http://dx.doi.org/10.1021/jm501026z

[19]. Nazreen, S.; Alam, M. S.; Hamid, H.; Yar, M. S.; Shafi, S.; Dhulap, A.; Alam, P.; Pasha, M.; Bano, S.; Alam, M. M. Eur. J. Med. Chem. 2014, 87, 175-185.
http://dx.doi.org/10.1016/j.ejmech.2014.09.010

[20]. Chavan, S.; Zangade, S.; Vibhute, A.; Vibhute, Y. Eur. J. Chem. 2013, 4, 98-101.
http://dx.doi.org/10.5155/eurjchem.4.2.98-101.714

[21]. Devi, P. B.; Samala, G.; Sridevi, J. P.; Saxena, S.; Alvala, M.; Salina, E. G.; Sriram, D.; Yogeeswari, P. Chem. Med. Chem. 2014, 9, 2538-2547.
http://dx.doi.org/10.1002/cmdc.201402171

[22]. Hidalgo‐Figueroa, S.; Ramírez‐Espinosa, J. J.; Estrada‐Soto, S.; Almanza‐Pérez, J. C.; Román‐Ramos, R.; Alarcón‐Aguilar, F. J.; Hernández‐Rosado, J. V.; Moreno‐Díaz, H.; Díaz‐Couti-o, D.; Navarrete‐Vázquez, G. Chem. Biol. Drug Des. 2013, 81, 474-483.
http://dx.doi.org/10.1111/cbdd.12102

[23]. Barros, F. W.; Silva, T. G.; da Rocha Pitta, M. G.; Bezerra, D. P.; Costa-Lotufo, L. V.; de Moraes, M. O.; Pessoa, C.; de Moura, M. A. F.; de Abreu, F. C.; de Lima, M. d. C. A. Bioorgan. Med. Chem. 2012, 20, 3533-3539.
http://dx.doi.org/10.1016/j.bmc.2012.04.007

[24]. Jain, A. K.; Vaidya, A.; Ravichandran, V.; Kashaw, S. K.; Agrawal, R. K. Bioorgan. Med. Chem. 2012, 20, 3378-3395.
http://dx.doi.org/10.1016/j.bmc.2012.03.069

[25]. Jain, V. S.; Vora, D. K.; Ramaa, C. Bioorgan. Med. Chem. 2013, 21, 1599-1620.
http://dx.doi.org/10.1016/j.bmc.2013.01.029

[26]. Keri, R. S.; Patil, M. R.; Patil, S. A.; Budagumpi, S. Eur. J. Med. Chem. 2015, 89, 207-251.
http://dx.doi.org/10.1016/j.ejmech.2014.10.059

[27]. Shehab, W. S.; Mouneir, S. M. Eur. J. Chem. 2015, 6, 157-162.
http://dx.doi.org/10.5155/eurjchem.6.2.157-162.1219

[28]. Mushtaque, M.; Avecilla, F.; Azam, A. Eur. J. Med. Chem. 2012, 55, 439.
http://dx.doi.org/10.1016/j.ejmech.2012.06.052

[29]. Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347-361.
http://dx.doi.org/10.1016/j.cbpa.2010.02.018

[30]. Bansal, Y.; Silakari, O. Eur. J. Med. Chem. 2014, 76, 31-42.
http://dx.doi.org/10.1016/j.ejmech.2014.01.060

[31]. Dubey, A.; Srivastava, S.; Srivastava, S. Bioorg. Med. Chem. Lett. 2011, 21, 569-573.
http://dx.doi.org/10.1016/j.bmcl.2010.10.057

[32]. Upadhyay, A.; Srivastava, S.; Srivastava, S. Eur. J. Med. Chem. 2010, 45, 3541-3548.
http://dx.doi.org/10.1016/j.ejmech.2010.04.029

[33]. Bürli, R. W.; Ge, Y.; White, S.; Baird, E. E.; Touami, S. M.; Taylor, M.; Kaizerman, J. A.; Moser, H. E. Bioorg. Med. Chem. Lett. 2002, 12, 2591-2594.
http://dx.doi.org/10.1016/S0960-894X(02)00515-2

[34]. Kohanski, M. A.; Dwyer, D. J.; Collins, J. J. Nat. Rev. Microbiol. 2010, 8, 423-435.
http://dx.doi.org/10.1038/nrmicro2333

[35]. Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. USA 2004, 101, 16789-16794.
http://dx.doi.org/10.1073/pnas.0407607101

[36]. Hernandes, M. Z.; Cavalcanti, S. M. T.; Moreira, D. R. M.; de Azevedo, J.; Filgueira, W.; Leite, A. C. L. Curr. Drug Targets 2010, 11, 303-314.
http://dx.doi.org/10.2174/138945010790711996

[37]. Drew, W. L.; Barry, A.; O'Toole, R.; Sherris, J. C. Appl. Microbiol. 1972, 24, 240-247.

[38]. Wiegand, I.; Hilpert, K.; Hancock, R. E. Nat. Protoc. 2008, 3, 163-175.
http://dx.doi.org/10.1038/nprot.2007.521

[39]. Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455-461.

[40]. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. Protein Eng. 1995, 8, 127-134.
http://dx.doi.org/10.1093/protein/8.2.127

[41]. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliver Rev. 2012, 64, 4-17.
http://dx.doi.org/10.1016/j.addr.2012.09.019

[42]. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714-3717.
http://dx.doi.org/10.1021/jm000942e

[43]. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615-2623.
http://dx.doi.org/10.1021/jm020017n

[44]. Sander, T.; Freyss, J.; von Korff, M.; Reich, J. R.; Rufener, C. J. Chem. Inf. Model. 2009, 49, 232-246.
http://dx.doi.org/10.1021/ci800305f

[45]. Domagala, J. M. J. Antimicrob. Chemother. 1994, 33, 685-706.
http://dx.doi.org/10.1093/jac/33.4.685

[46]. Drew, H. R.; Wing, R. M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R. E. P Natl. Acad. Sci. USA 1981, 78, 2179-2183.
http://dx.doi.org/10.1073/pnas.78.4.2179

[47]. Levy, C.; Minnis, D.; Derrick, J. P. Biochem. J. 2008, 412, 379-388.
http://dx.doi.org/10.1042/BJ20071598

[48]. Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Expert Opin. Drug Dis. 2012, 7, 375-383.
http://dx.doi.org/10.1517/17460441.2012.678829

[49]. Nakama, T.; Nureki, O. J. Biol. Chem. 2001, 276, 47387-47393.
http://dx.doi.org/10.1074/jbc.M109089200

[50]. Wu, D.; Hu, T.; Zhang, L.; Chen, J.; Du, J.; Ding, J.; Jiang, H.; Shen, X. Protein Sci. 2008, 17, 1066-1076.
http://dx.doi.org/10.1110/ps.083495908

[51]. Han, S.; Caspers, N.; Zaniewski, R. P.; Lacey, B. M.; Tomaras, A. P.; Feng, X.; Geoghegan, K. F. J. Am. Chem. Soc. 2011, 133, 20536-20545.
http://dx.doi.org/10.1021/ja208835z

[52]. Lu, J.; Patel, S.; Sharma, N.; Soisson, S. M.; Kishii, R.; Takei, M.; Fukuda, Y.; Lumb, K. J.; Singh, S. B. ACS Chem. Biol. 2014, 9, 2023-2031.
http://dx.doi.org/10.1021/cb5001197

[53]. Sherer, B. A.; Hull, K.; Green, O.; Basarab, G.; Hauck, S.; Hill, P.; Loch, J. T.; Mullen, G.; Bist, S.; Bryant, J.; Boriack-Sjodin, A.; Read, J.; DeGrace, N.; Uria-Nickelsen, M.; Illingworth, R. N.; Eakin, A. E. Bioorg. Med. Chem. Lett. 2011, 21, 7416-7420.
http://dx.doi.org/10.1016/j.bmcl.2011.10.010

[54]. Ward, W. H.; Holdgate, G. A.; Rowsell, S.; McLean, E. G.; Pauptit, R. A.; Clayton, E.; Nichols, W. W.; Colls, J. G.; Minshull, C. A.; Jude, D. A.; Mistry, A.; Timms, D.; Camble, R.; Hales, N. J.; Britton, C. J.; Taylor, I. W. Biochemistry-US 1999, 38, 12514-12525.
http://dx.doi.org/10.1021/bi9907779

[55]. McMurry, L. M.; Oethinger, M.; Levy, S. B. Nature 1998, 394, 531-532.
http://dx.doi.org/10.1038/28970

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).