data_wt2312w-shelxl loop_ _journal_name_full 'European Journal of Chemistry' _journal_coden_ASTM EJCUA9 _journal_volume 8 _journal_issue 1 _journal_year 2017 _journal_page_first 15 _journal_page_last 17 _audit_creation_method SHELXL-97 _chemical_name_systematic ? _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C14 H12 N2 O2' _chemical_formula_sum 'C14 H12 N2 O2' _chemical_formula_weight 240.26 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/n' _symmetry_space_group_name_Hall '-P 2yn' _symmetry_Int_Tables_number 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 8.5332(11) _cell_length_b 6.3185(8) _cell_length_c 11.8338(15) _cell_angle_alpha 90.00 _cell_angle_beta 107.917(2) _cell_angle_gamma 90.00 _cell_volume 607.10(13) _cell_formula_units_Z 2 _cell_measurement_temperature 297(2) _cell_measurement_reflns_used 3211 _cell_measurement_theta_min 2.60 _cell_measurement_theta_max 25.02 _exptl_crystal_description plate _exptl_crystal_colour light-yellow _exptl_crystal_size_max 0.36 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.06 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.314 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 252 _exptl_absorpt_coefficient_mu 0.090 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.9684 _exptl_absorpt_correction_T_max 0.9946 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2004)' _exptl_special_details ? _diffrn_ambient_temperature 297(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART 1000 CCD' _diffrn_measurement_method '\w & \f scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count . _diffrn_standards_interval_time . _diffrn_standards_decay_% ? _diffrn_reflns_number 3211 _diffrn_reflns_av_R_equivalents 0.0129 _diffrn_reflns_av_sigmaI/netI 0.0124 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 7 _diffrn_reflns_limit_l_min -14 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 2.60 _diffrn_reflns_theta_max 25.02 _reflns_number_total 1071 _reflns_number_gt 941 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART (Bruker AXS Inc, 1998)' _computing_cell_refinement 'SAINT v7.34A (Bruker AXS Inc, 2006)' _computing_data_reduction 'SHELXL-97 (Sheldrick, 2008)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'MERCURY (Macrae et al., 2008)' _computing_publication_material 'SHELXL97 (Sheldrick, 2008)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0663P)^2^+0.0804P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1071 _refine_ls_number_parameters 86 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0389 _refine_ls_R_factor_gt 0.0343 _refine_ls_wR_factor_ref 0.1061 _refine_ls_wR_factor_gt 0.0994 _refine_ls_goodness_of_fit_ref 1.008 _refine_ls_restrained_S_all 1.008 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group O1 O 0.61986(12) 0.3245(2) 0.22547(8) 0.0710(4) Uani 1 1 d . . . H1O H 0.613(2) 0.217(4) 0.1773(19) 0.097(6) Uiso 1 1 d . . . N1 N 0.50271(11) 0.08459(15) 0.03853(8) 0.0434(3) Uani 1 1 d . . . C1 C 0.38100(14) 0.21233(18) 0.00242(9) 0.0419(3) Uani 1 1 d . . . H1 H 0.3002 0.1859 -0.0694 0.050 Uiso 1 1 calc R . . C2 C 0.36631(13) 0.39694(18) 0.07086(9) 0.0412(3) Uani 1 1 d . . . C3 C 0.23130(15) 0.5319(2) 0.02936(11) 0.0506(4) Uani 1 1 d . . . H3 H 0.1510 0.5008 -0.0420 0.061 Uiso 1 1 calc R . . C4 C 0.21409(17) 0.7100(2) 0.09147(13) 0.0597(4) Uani 1 1 d . . . H4 H 0.1225 0.7970 0.0630 0.072 Uiso 1 1 calc R . . C5 C 0.33491(18) 0.7581(2) 0.19693(13) 0.0596(4) Uani 1 1 d . . . H5 H 0.3247 0.8790 0.2389 0.072 Uiso 1 1 calc R . . C6 C 0.46896(16) 0.6295(2) 0.23971(11) 0.0574(4) Uani 1 1 d . . . H6 H 0.5494 0.6642 0.3103 0.069 Uiso 1 1 calc R . . C7 C 0.48625(15) 0.4476(2) 0.17888(10) 0.0475(3) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 O1 0.0614(6) 0.0835(8) 0.0507(6) -0.0223(5) -0.0083(4) 0.0177(5) N1 0.0497(6) 0.0424(5) 0.0354(5) -0.0039(4) 0.0093(4) -0.0017(4) C1 0.0430(6) 0.0451(7) 0.0338(6) 0.0001(4) 0.0064(4) -0.0049(5) C2 0.0436(6) 0.0427(6) 0.0377(6) 0.0009(5) 0.0134(5) -0.0045(5) C3 0.0495(7) 0.0513(8) 0.0487(7) 0.0041(5) 0.0118(5) 0.0018(5) C4 0.0636(8) 0.0509(8) 0.0703(9) 0.0056(6) 0.0291(7) 0.0093(6) C5 0.0765(9) 0.0477(8) 0.0662(9) -0.0102(6) 0.0390(7) -0.0052(6) C6 0.0633(8) 0.0614(8) 0.0482(7) -0.0156(6) 0.0182(6) -0.0088(6) C7 0.0475(7) 0.0540(7) 0.0402(6) -0.0049(5) 0.0121(5) -0.0022(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O1 C7 1.3500(15) . ? O1 H1O 0.88(2) . ? N1 C1 1.2804(15) . ? N1 N1 1.3966(18) 3_655 ? C1 C2 1.4474(16) . ? C1 H1 0.9300 . ? C2 C3 1.3957(16) . ? C2 C7 1.4068(16) . ? C3 C4 1.3762(19) . ? C3 H3 0.9300 . ? C4 C5 1.386(2) . ? C4 H4 0.9300 . ? C5 C6 1.3671(19) . ? C5 H5 0.9300 . ? C6 C7 1.3878(18) . ? C6 H6 0.9300 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C7 O1 H1O 107.5(13) . . ? C1 N1 N1 113.83(11) . 3_655 ? N1 C1 C2 121.48(10) . . ? N1 C1 H1 119.3 . . ? C2 C1 H1 119.3 . . ? C3 C2 C7 118.14(11) . . ? C3 C2 C1 119.99(10) . . ? C7 C2 C1 121.86(11) . . ? C4 C3 C2 121.59(12) . . ? C4 C3 H3 119.2 . . ? C2 C3 H3 119.2 . . ? C3 C4 C5 119.22(13) . . ? C3 C4 H4 120.4 . . ? C5 C4 H4 120.4 . . ? C6 C5 C4 120.59(12) . . ? C6 C5 H5 119.7 . . ? C4 C5 H5 119.7 . . ? C5 C6 C7 120.70(12) . . ? C5 C6 H6 119.7 . . ? C7 C6 H6 119.7 . . ? O1 C7 C6 118.46(11) . . ? O1 C7 C2 121.79(11) . . ? C6 C7 C2 119.74(12) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H1O N1 0.88(2) 1.83(2) 2.6134(13) 148.7(19) . loop_ _publ_manuscript_incl_extra_item 'I' 'J' 'CgI...CgJ' 'Dihedral angle' 'CgI_Perp' 'CgJ_Perp' 'CgI_Offset' loop_ _geom_extra_tableA_col_1 _geom_extra_tableA_col_2 _geom_extra_tableA_col_3 _geom_extra_tableA_col_4 _geom_extra_tableA_col_5 _geom_extra_tableA_col_6 _geom_extra_tableA_col_7 'I' 'J' 'CgI...CgJ' 'Dihedral angle' 'CgI_Perp' 'CgJ_Perp' 'CgI_Offset' 1 1^i^ 4.7612(10) 0 3.4090(5) 3.4090(5) 3.324 _geom_extra_table_head_A ; \p...\p interactions (\%A, \%) Cg1 is centroid of the ring C2-C7, CgI...CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgJ_Perp is the perpendicular distance of CgJ from ring I. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. ; _geom_table_footnote_A ; symmetry operators: ^i^: 1-X, 1-Y, -Z ; _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 25.02 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.104 _refine_diff_density_min -0.180 _refine_diff_density_rms 0.046 # start Validation Reply Form _vrf_PLAT_wt2312w-shelxl ; PROBLEM: RESPONSE: ; # End Validation Reply Form #=========================================================================== data_General _audit_creation_date '2012-Mar-13' _audit_creation_method 'SHELXL97' _audit_update_record ; 2012-Mar-13 ; # Formatted by publCIF _publ_section_title ; 2,2'-[(1E,2E)-hydrazine-1,2-diylidenedi(E)methylylidene]diphenol ; _publ_section_related_literature ; For synthesis of Schiff bases, see: Siddiqui et al. (2006); Iqbal et al. (2007). For structural back ground of related Schiff base compounds, see: Baig et al. (2010); Hao et al. (2010a,b). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For biological significant of Schiff bases, see: Sriram et al. (2006); Karthikeyan et al. (2006); Dao et al. (2000). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For standard bond-length data, see: Allen et al. (1987). ; #============================================================================== # PROCESSING SUMMARY (IUCr Office Use Only) _journal_date_recd_electronic ? _journal_date_from_coeditor ? _journal_date_accepted ? _journal_coeditor_code ? #============================================================================== # SUBMISSION DETAILS _publ_contact_author_name 'Dr Sohail Saeed' _publ_contact_author_email 'sohail262001@yahoo.com' _publ_contact_author_fax '092-51-925-0081' _publ_contact_author_phone '092-51-925-0081' _publ_contact_author_address ; Department of Chemistry, Research Complex Allama Iqbal Open University Islamabad-44000, Pakistan ; _publ_contact_letter ; ENTER TEXT OF LETTER ; _publ_requested_journal 'Acta Crystallogr., Sect. E: Struct. Rep. Online' _publ_requested_category QO #'CHOOSE FI FM FO CI CM CO or AD' _publ_requested_coeditor_name ? #============================================================================== # TITLE AND AUTHOR LIST # _publ_section_title # ; # Directory Reference: COM648 wt2312w Sohail Saeed's SS-S110 10-Mar-2012 # N,N'-Di(2-hydroxybenzylidene)hydrazine, C~14~H~12~N~2~O~2~ # ; _publ_section_title_footnote . loop_ _publ_author_name _publ_author_address _publ_author_footnote _publ_author_email 'Mohamed, Shaaban K.' ; Chemistry and Environmental Division, Manchester Metropolitan University, England ; . . 'Jaber, Abdel-Aal M.' ; Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt ; . ; wtwong@hku.hk ; 'Saeed, Sohail' ; Department of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad-44000, Pakistan ; . ; sohail262001@yahoo.com ; 'Wong, Wing-Tak' ; Department of Chemistry The University of Hong Kong Pokfulam Road, Pokfulam, Hong Kong SAR, P. R. CHINA ; . . _publ_section_synopsis . #============================================================================== # TEXT _publ_section_abstract ; The title molecule is planar. The conjugated double units were both in E-configurations. Intramolecular O-H...N H-bonding interactions were observed in the lattice. ; _publ_section_comment ; Schiff base compounds are important class of materials due to their flexibility, structural similarities with natural biological substances and also due to presence of imine (-N=CH-) which imports in elucidating the mechanism of transformation and racemisation reaction in biological system (Rajavel et al., 2008). Schiff bases-bimolecular condensation products of hydrazine with aldehydes - represent valuable intermediates in organic synthesis with various applications (Ugras et al., 2006). Schiff bases resulted from aromatic aldehydes ortho-substituted with a hydroxyl group have initially arouse the researches' interest due to the several donor atoms in their structures which give them an advantage to form a water soluble transition metal complexes (Wadher et al., 2009). This advantage makes them have a potential application in water treatment (Franco et al., 2000). They could also act as valuable ligands whose biological activity has been shown to increase on complexation (Mohamed et al., 2006). There are two molecules of N,N'-di(2-hydroxybenzylidene)hydrazine, C~14~H~12~N~2~O~2~, in the unit cell. The molecule is more or less planar, with maximum deviation from the mean plane being less than 0.028(2)\%A. Intramolecular O-H...N hydrogen bonding interactions were observed. ; _publ_section_references ; Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 12, S1--S19. Baig, Y., Siddiqui, H. L., Siddiqui, W. A., Mustafa, G. & Krautscheid, H. (2010). Acta Cryst. E66, o2603. Bruker AXS Inc. (1998). SMART version 5.059, Madison, Wisconsin, USA. Bruker AXS Inc. (2006). SAINT, version 7.34A, Madison, Wisconsin, USA. Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805--813. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576--o577. Franco, E., L\'opez-Torres, E., Mendiola, M.A., Sevilla, M.T. (2000). Polyhedron 19 , 441--451. Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349--o350. Hao, Y.-M.(2010a). Acta Cryst. E66, o1177. Hao, Y.-M.(2010b). Acta Cryst. E66, o1631. Iqbal, A., Siddiqui, H. L., Ashraf, C. M., Ahmad, M. & Weaver, G. W. (2007). Molecules 12, 245--254. Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403--m404. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482--7489. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). Mercury. J. Appl. Cryst. 41, 466-470. Mohamed, G. G., Omar, M. M. & Hindy, A. M. (2006). Turk. J. Chem. 30, 361--382. Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897. Rajavel, R., Vadivu, M. S. & Anitha, C. (2008). E-Journal Chem. 5, 620--626. Sheldrick, G. M. (2004). SADABS, G\"ottingen University, G\"ottingen, Germany. Sheldrick, G. M. (2008). SHELX, SHELXL97, SHELXS97 program. Acta Cryst. E64, 112-122. Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, G. W. (2006). Molecules 11, 206--211. Ugras, H.I., Basaran, I., Kilic, T. & Cakir, U. (2006). J. Heterocyclic Chem. 43, 1679--1684. Wadher, S. J., Puranik, M. P., Karande, N. A & Yeole, P. G. (2009). International Journal of PharmTech Research 1, 22--33. Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K.(2009). Acta Cryst. E65, m570--m571. ; _publ_section_acknowledgements ; S.S is thankful to The University of Hong Kong for providing the facility of crystallographic studies. ; _publ_section_figure_captions ; Fig. 1. The title molecule was shown at 50% probability thermal ellipsoids with the atom numbering scheme. ; _publ_section_exptl_prep ; The title compound has been synthesised un-intentionally and isolated as a major product from the reaction of 0.01 mol 1,6-dibromo hexane with 0.01 mole hydrazine in presence of a catalytic amount of potassium carbonate (10 mg) in methanol for 10 minutes at 338 K followed by addition of 0.01 mol salicyaldehyde. The reaction mixture was heated for further 30 minutes then poured on crushed ice (50 g). A pink cake was filtered off, washed with cold ethanol, dried and recrystallized from ethanol. The resulting shiny yellow crystals were pure enough in 83% yield and were suitable for x-ray diffraction. M.p.499-503 K. ; _publ_section_exptl_refinement ; The structure was solved by direct methods (SHELXS97, Sheldrick, 2008) and expanded using Fourier techniques. All non-H atoms were refined anisotropically. The C-bound H atoms are all placed at geometrical positions with C---H = 0.93\%A for phenyl/vinyl H-atoms. The C-bound phenyl H-atoms were refined using riding model with U~iso~(H) = 1.2U~eq~(Carrier). The O-bound H atoms were located from difference Fourier map and were refined isotropically. Highest peak is 0.10 at (0.6746, -0.0015, 0.4134) [0.62\%A from H3] Deepest hole is -0.18 at (0.1796, 0.0829, 0.3527) [1.24\%A from C4] ; #==============================================================================