data_wt2312w-shelxl
loop_
_journal_name_full 'European Journal of Chemistry'
_journal_coden_ASTM EJCUA9
_journal_volume 8
_journal_issue 1
_journal_year 2017
_journal_page_first 15
_journal_page_last 17
_audit_creation_method SHELXL-97
_chemical_name_systematic
?
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety 'C14 H12 N2 O2'
_chemical_formula_sum
'C14 H12 N2 O2'
_chemical_formula_weight 240.26
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting monoclinic
_symmetry_space_group_name_H-M 'P 21/n'
_symmetry_space_group_name_Hall '-P 2yn'
_symmetry_Int_Tables_number 14
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x-1/2, -y-1/2, z-1/2'
_cell_length_a 8.5332(11)
_cell_length_b 6.3185(8)
_cell_length_c 11.8338(15)
_cell_angle_alpha 90.00
_cell_angle_beta 107.917(2)
_cell_angle_gamma 90.00
_cell_volume 607.10(13)
_cell_formula_units_Z 2
_cell_measurement_temperature 297(2)
_cell_measurement_reflns_used 3211
_cell_measurement_theta_min 2.60
_cell_measurement_theta_max 25.02
_exptl_crystal_description plate
_exptl_crystal_colour light-yellow
_exptl_crystal_size_max 0.36
_exptl_crystal_size_mid 0.20
_exptl_crystal_size_min 0.06
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.314
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 252
_exptl_absorpt_coefficient_mu 0.090
_exptl_absorpt_correction_type multi-scan
_exptl_absorpt_correction_T_min 0.9684
_exptl_absorpt_correction_T_max 0.9946
_exptl_absorpt_process_details 'SADABS (Sheldrick, 2004)'
_exptl_special_details
?
_diffrn_ambient_temperature 297(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device_type 'Bruker SMART 1000 CCD'
_diffrn_measurement_method '\w & \f scans'
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number 0
_diffrn_standards_interval_count .
_diffrn_standards_interval_time .
_diffrn_standards_decay_% ?
_diffrn_reflns_number 3211
_diffrn_reflns_av_R_equivalents 0.0129
_diffrn_reflns_av_sigmaI/netI 0.0124
_diffrn_reflns_limit_h_min -10
_diffrn_reflns_limit_h_max 9
_diffrn_reflns_limit_k_min -5
_diffrn_reflns_limit_k_max 7
_diffrn_reflns_limit_l_min -14
_diffrn_reflns_limit_l_max 14
_diffrn_reflns_theta_min 2.60
_diffrn_reflns_theta_max 25.02
_reflns_number_total 1071
_reflns_number_gt 941
_reflns_threshold_expression I>2\s(I)
_computing_data_collection 'SMART (Bruker AXS Inc, 1998)'
_computing_cell_refinement 'SAINT v7.34A (Bruker AXS Inc, 2006)'
_computing_data_reduction 'SHELXL-97 (Sheldrick, 2008)'
_computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)'
_computing_molecular_graphics 'MERCURY (Macrae et al., 2008)'
_computing_publication_material 'SHELXL97 (Sheldrick, 2008)'
_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^. The threshold expression of
F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2^ are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'calc w=1/[\s^2^(Fo^2^)+(0.0663P)^2^+0.0804P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 1071
_refine_ls_number_parameters 86
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.0389
_refine_ls_R_factor_gt 0.0343
_refine_ls_wR_factor_ref 0.1061
_refine_ls_wR_factor_gt 0.0994
_refine_ls_goodness_of_fit_ref 1.008
_refine_ls_restrained_S_all 1.008
_refine_ls_shift/su_max 0.000
_refine_ls_shift/su_mean 0.000
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
O1 O 0.61986(12) 0.3245(2) 0.22547(8) 0.0710(4) Uani 1 1 d . . .
H1O H 0.613(2) 0.217(4) 0.1773(19) 0.097(6) Uiso 1 1 d . . .
N1 N 0.50271(11) 0.08459(15) 0.03853(8) 0.0434(3) Uani 1 1 d . . .
C1 C 0.38100(14) 0.21233(18) 0.00242(9) 0.0419(3) Uani 1 1 d . . .
H1 H 0.3002 0.1859 -0.0694 0.050 Uiso 1 1 calc R . .
C2 C 0.36631(13) 0.39694(18) 0.07086(9) 0.0412(3) Uani 1 1 d . . .
C3 C 0.23130(15) 0.5319(2) 0.02936(11) 0.0506(4) Uani 1 1 d . . .
H3 H 0.1510 0.5008 -0.0420 0.061 Uiso 1 1 calc R . .
C4 C 0.21409(17) 0.7100(2) 0.09147(13) 0.0597(4) Uani 1 1 d . . .
H4 H 0.1225 0.7970 0.0630 0.072 Uiso 1 1 calc R . .
C5 C 0.33491(18) 0.7581(2) 0.19693(13) 0.0596(4) Uani 1 1 d . . .
H5 H 0.3247 0.8790 0.2389 0.072 Uiso 1 1 calc R . .
C6 C 0.46896(16) 0.6295(2) 0.23971(11) 0.0574(4) Uani 1 1 d . . .
H6 H 0.5494 0.6642 0.3103 0.069 Uiso 1 1 calc R . .
C7 C 0.48625(15) 0.4476(2) 0.17888(10) 0.0475(3) Uani 1 1 d . . .
loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
O1 0.0614(6) 0.0835(8) 0.0507(6) -0.0223(5) -0.0083(4) 0.0177(5)
N1 0.0497(6) 0.0424(5) 0.0354(5) -0.0039(4) 0.0093(4) -0.0017(4)
C1 0.0430(6) 0.0451(7) 0.0338(6) 0.0001(4) 0.0064(4) -0.0049(5)
C2 0.0436(6) 0.0427(6) 0.0377(6) 0.0009(5) 0.0134(5) -0.0045(5)
C3 0.0495(7) 0.0513(8) 0.0487(7) 0.0041(5) 0.0118(5) 0.0018(5)
C4 0.0636(8) 0.0509(8) 0.0703(9) 0.0056(6) 0.0291(7) 0.0093(6)
C5 0.0765(9) 0.0477(8) 0.0662(9) -0.0102(6) 0.0390(7) -0.0052(6)
C6 0.0633(8) 0.0614(8) 0.0482(7) -0.0156(6) 0.0182(6) -0.0088(6)
C7 0.0475(7) 0.0540(7) 0.0402(6) -0.0049(5) 0.0121(5) -0.0022(5)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
O1 C7 1.3500(15) . ?
O1 H1O 0.88(2) . ?
N1 C1 1.2804(15) . ?
N1 N1 1.3966(18) 3_655 ?
C1 C2 1.4474(16) . ?
C1 H1 0.9300 . ?
C2 C3 1.3957(16) . ?
C2 C7 1.4068(16) . ?
C3 C4 1.3762(19) . ?
C3 H3 0.9300 . ?
C4 C5 1.386(2) . ?
C4 H4 0.9300 . ?
C5 C6 1.3671(19) . ?
C5 H5 0.9300 . ?
C6 C7 1.3878(18) . ?
C6 H6 0.9300 . ?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
C7 O1 H1O 107.5(13) . . ?
C1 N1 N1 113.83(11) . 3_655 ?
N1 C1 C2 121.48(10) . . ?
N1 C1 H1 119.3 . . ?
C2 C1 H1 119.3 . . ?
C3 C2 C7 118.14(11) . . ?
C3 C2 C1 119.99(10) . . ?
C7 C2 C1 121.86(11) . . ?
C4 C3 C2 121.59(12) . . ?
C4 C3 H3 119.2 . . ?
C2 C3 H3 119.2 . . ?
C3 C4 C5 119.22(13) . . ?
C3 C4 H4 120.4 . . ?
C5 C4 H4 120.4 . . ?
C6 C5 C4 120.59(12) . . ?
C6 C5 H5 119.7 . . ?
C4 C5 H5 119.7 . . ?
C5 C6 C7 120.70(12) . . ?
C5 C6 H6 119.7 . . ?
C7 C6 H6 119.7 . . ?
O1 C7 C6 118.46(11) . . ?
O1 C7 C2 121.79(11) . . ?
C6 C7 C2 119.74(12) . . ?
loop_
_geom_hbond_atom_site_label_D
_geom_hbond_atom_site_label_H
_geom_hbond_atom_site_label_A
_geom_hbond_distance_DH
_geom_hbond_distance_HA
_geom_hbond_distance_DA
_geom_hbond_angle_DHA
_geom_hbond_site_symmetry_A
O1 H1O N1 0.88(2) 1.83(2) 2.6134(13) 148.7(19) .
loop_
_publ_manuscript_incl_extra_item
'I'
'J'
'CgI...CgJ'
'Dihedral angle'
'CgI_Perp'
'CgJ_Perp'
'CgI_Offset'
loop_
_geom_extra_tableA_col_1
_geom_extra_tableA_col_2
_geom_extra_tableA_col_3
_geom_extra_tableA_col_4
_geom_extra_tableA_col_5
_geom_extra_tableA_col_6
_geom_extra_tableA_col_7
'I' 'J' 'CgI...CgJ' 'Dihedral angle'
'CgI_Perp' 'CgJ_Perp' 'CgI_Offset'
1 1^i^ 4.7612(10) 0 3.4090(5) 3.4090(5) 3.324
_geom_extra_table_head_A
;
\p...\p interactions (\%A, \%)
Cg1 is centroid of the ring C2-C7, CgI...CgJ is the distance
between ring centroids. The dihedral angle is that between the planes of the
rings I and J. CgI_Perp is the perpendicular distance
of CgI from ring J. CgJ_Perp is the perpendicular
distance of CgJ from ring I. CgI_Offset is the distance
between CgI and perpendicular projection of CgJ on ring I.
;
_geom_table_footnote_A
;
symmetry operators:
^i^: 1-X, 1-Y, -Z
;
_diffrn_measured_fraction_theta_max 0.998
_diffrn_reflns_theta_full 25.02
_diffrn_measured_fraction_theta_full 0.998
_refine_diff_density_max 0.104
_refine_diff_density_min -0.180
_refine_diff_density_rms 0.046
# start Validation Reply Form
_vrf_PLAT_wt2312w-shelxl
;
PROBLEM:
RESPONSE:
;
# End Validation Reply Form
#===========================================================================
data_General
_audit_creation_date '2012-Mar-13'
_audit_creation_method 'SHELXL97'
_audit_update_record
;
2012-Mar-13
;
# Formatted by publCIF
_publ_section_title
;
2,2'-[(1E,2E)-hydrazine-1,2-diylidenedi(E)methylylidene]diphenol
;
_publ_section_related_literature
;
For synthesis of Schiff bases, see: Siddiqui et al. (2006); Iqbal et
al. (2007). For structural back ground of related Schiff base compounds,
see: Baig et al. (2010); Hao et al. (2010a,b). For the
coordination chemistry of Schiff bases, see: Ali et al. (2008);
Kargar et al. (2009); Yeap et al. (2009). For biological
significant of Schiff bases, see: Sriram et al. (2006);
Karthikeyan et al. (2006); Dao et al. (2000). For the crystal
structures of Schiff base compounds, see: Fun et al. (2009);
Nadeem et al. (2009); Eltayeb et al. (2008). For standard
bond-length data, see: Allen et al. (1987).
;
#==============================================================================
# PROCESSING SUMMARY (IUCr Office Use Only)
_journal_date_recd_electronic ?
_journal_date_from_coeditor ?
_journal_date_accepted ?
_journal_coeditor_code ?
#==============================================================================
# SUBMISSION DETAILS
_publ_contact_author_name 'Dr Sohail Saeed'
_publ_contact_author_email 'sohail262001@yahoo.com'
_publ_contact_author_fax '092-51-925-0081'
_publ_contact_author_phone '092-51-925-0081'
_publ_contact_author_address
;
Department of Chemistry, Research Complex
Allama Iqbal Open University
Islamabad-44000, Pakistan
;
_publ_contact_letter
;
ENTER TEXT OF LETTER
;
_publ_requested_journal
'Acta Crystallogr., Sect. E: Struct. Rep. Online'
_publ_requested_category QO #'CHOOSE FI FM FO CI CM CO or AD'
_publ_requested_coeditor_name ?
#==============================================================================
# TITLE AND AUTHOR LIST
# _publ_section_title
# ;
# Directory Reference: COM648 wt2312w Sohail Saeed's SS-S110 10-Mar-2012
# N,N'-Di(2-hydroxybenzylidene)hydrazine, C~14~H~12~N~2~O~2~
# ;
_publ_section_title_footnote .
loop_
_publ_author_name
_publ_author_address
_publ_author_footnote
_publ_author_email
'Mohamed, Shaaban K.'
;
Chemistry and Environmental Division,
Manchester Metropolitan University,
England
;
.
.
'Jaber, Abdel-Aal M.'
;
Department of Chemistry,
Faculty of Science,
Assiut University,
Assiut,
Egypt
;
.
;
wtwong@hku.hk
;
'Saeed, Sohail'
;
Department of Chemistry,
Research Complex,
Allama Iqbal Open University,
Islamabad-44000,
Pakistan
;
.
;
sohail262001@yahoo.com
;
'Wong, Wing-Tak'
;
Department of Chemistry
The University of Hong Kong
Pokfulam Road, Pokfulam,
Hong Kong SAR,
P. R. CHINA
;
.
.
_publ_section_synopsis .
#==============================================================================
# TEXT
_publ_section_abstract
;
The title molecule is planar. The conjugated double units were both in
E-configurations. Intramolecular O-H...N H-bonding interactions
were observed in the lattice.
;
_publ_section_comment
;
Schiff base compounds are important class of materials due to their flexibility,
structural similarities with natural biological substances and also due to
presence of imine (-N=CH-) which imports in elucidating the mechanism of
transformation and racemisation reaction in biological system (Rajavel et
al., 2008). Schiff bases-bimolecular condensation products of hydrazine with
aldehydes - represent valuable intermediates in organic synthesis with various
applications (Ugras et al., 2006). Schiff bases resulted from aromatic
aldehydes ortho-substituted with a hydroxyl group have initially arouse the
researches' interest due to the several donor atoms in their structures which
give them an advantage to form a water soluble transition metal complexes
(Wadher et al., 2009). This advantage makes them have a potential
application in water treatment (Franco et al., 2000). They could also act
as valuable ligands whose biological activity has been shown to increase on
complexation (Mohamed et al., 2006).
There are two molecules of N,N'-di(2-hydroxybenzylidene)hydrazine,
C~14~H~12~N~2~O~2~, in the unit cell. The molecule is more or less planar,
with maximum deviation from the mean plane being less than 0.028(2)\%A.
Intramolecular O-H...N hydrogen bonding interactions were observed.
;
_publ_section_references
;
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R.
(1987). J. Chem. Soc. Perkin Trans. 2 12, S1--S19.
Baig, Y., Siddiqui, H. L., Siddiqui, W. A., Mustafa, G. & Krautscheid, H.
(2010). Acta Cryst. E66, o2603.
Bruker AXS Inc. (1998). SMART version 5.059, Madison, Wisconsin, USA.
Bruker AXS Inc. (2006). SAINT, version 7.34A, Madison, Wisconsin, USA.
Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R.
J. (2000). Eur. J. Med. Chem. 35, 805--813.
Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008).
Acta Cryst. E64, o576--o577.
Franco, E., L\'opez-Torres, E., Mendiola, M.A., Sevilla, M.T. (2000).
Polyhedron 19 , 441--451.
Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst.
E65, o349--o350.
Hao, Y.-M.(2010a). Acta Cryst. E66, o1177.
Hao, Y.-M.(2010b). Acta Cryst. E66, o1631.
Iqbal, A., Siddiqui, H. L., Ashraf, C. M., Ahmad, M. & Weaver, G. W. (2007).
Molecules 12, 245--254.
Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst.
E65, m403--m404.
Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. &
Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482--7489.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P.,
Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A.
(2008). Mercury. J. Appl. Cryst. 41, 466-470.
Mohamed, G. G., Omar, M. M. & Hindy, A. M. (2006). Turk. J. Chem.
30, 361--382.
Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65,
o897.
Rajavel, R., Vadivu, M. S. & Anitha, C. (2008). E-Journal Chem.
5, 620--626.
Sheldrick, G. M. (2004). SADABS, G\"ottingen University, G\"ottingen,
Germany.
Sheldrick, G. M. (2008). SHELX, SHELXL97, SHELXS97
program. Acta Cryst. E64, 112-122.
Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, G. W. (2006). Molecules
11, 206--211.
Ugras, H.I., Basaran, I., Kilic, T. & Cakir, U. (2006). J. Heterocyclic
Chem. 43, 1679--1684.
Wadher, S. J., Puranik, M. P., Karande, N. A & Yeole, P. G. (2009).
International Journal of PharmTech Research 1, 22--33.
Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K.(2009). Acta Cryst.
E65, m570--m571.
;
_publ_section_acknowledgements
;
S.S is thankful to The University of Hong Kong for providing the facility of
crystallographic studies.
;
_publ_section_figure_captions
;
Fig. 1. The title molecule was shown at 50% probability thermal ellipsoids
with the atom numbering scheme.
;
_publ_section_exptl_prep
;
The title compound has been synthesised un-intentionally and isolated as a major
product from the reaction of 0.01 mol 1,6-dibromo hexane with 0.01 mole
hydrazine in presence of a catalytic amount of potassium carbonate (10 mg) in
methanol for 10 minutes at 338 K followed by addition of 0.01 mol
salicyaldehyde. The reaction mixture was heated for further 30 minutes then
poured on crushed ice (50 g). A pink cake was filtered off, washed with cold
ethanol, dried and recrystallized from ethanol. The resulting shiny yellow
crystals were pure enough in 83% yield and were suitable for x-ray diffraction.
M.p.499-503 K.
;
_publ_section_exptl_refinement
;
The structure was solved by direct methods (SHELXS97, Sheldrick,
2008) and expanded using Fourier techniques. All non-H atoms were refined
anisotropically.
The C-bound H atoms are all placed at geometrical positions with C---H =
0.93\%A for phenyl/vinyl H-atoms. The C-bound phenyl H-atoms were refined
using riding model with U~iso~(H) = 1.2U~eq~(Carrier).
The O-bound H atoms were located from difference Fourier map
and were refined isotropically.
Highest peak is 0.10 at (0.6746, -0.0015, 0.4134) [0.62\%A from H3]
Deepest hole is -0.18 at (0.1796, 0.0829, 0.3527) [1.24\%A from C4]
;
#==============================================================================