#============================================================================== data_global loop_ _journal_name_full 'European Journal of Chemistry' _journal_coden_ASTM EJCUA9 _journal_volume 11 _journal_issue 1 _journal_year 2020 _journal_page_first 6 _journal_page_last 14 #=============================================================================== data_I # SHELXTL code: rb11016 _audit_creation_method SHELXL-97 _chemical_name_systematic ; 4,4'-(1,2-Ethynediyl)bis-pyridine ; _chemical_name_common ; Bis(4-pyridyl)ethyne ; _chemical_melting_point 391 _chemical_formula_moiety 'C12 H8 N2' _chemical_formula_sum 'C12 H8 N2' _chemical_formula_weight 180.20 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting 'Orthorhombic' _symmetry_space_group_name_H-M 'Fddd' _symmetry_int_tables_number 70 _symmetry_space_group_name_Hall '-F 2uv 2vw' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+3/4, -y+3/4, z' '-x+3/4, y, -z+3/4' 'x, -y+3/4, -z+3/4' 'x, y+1/2, z+1/2' '-x+3/4, -y+5/4, z+1/2' '-x+3/4, y+1/2, -z+5/4' 'x, -y+5/4, -z+5/4' 'x+1/2, y, z+1/2' '-x+5/4, -y+3/4, z+1/2' '-x+5/4, y, -z+5/4' 'x+1/2, -y+3/4, -z+5/4' 'x+1/2, y+1/2, z' '-x+5/4, -y+5/4, z' '-x+5/4, y+1/2, -z+3/4' 'x+1/2, -y+5/4, -z+3/4' '-x, -y, -z' 'x-3/4, y-3/4, -z' 'x-3/4, -y, z-3/4' '-x, y-3/4, z-3/4' '-x, -y+1/2, -z+1/2' 'x-3/4, y-1/4, -z+1/2' 'x-3/4, -y+1/2, z-1/4' '-x, y-1/4, z-1/4' '-x+1/2, -y, -z+1/2' 'x-1/4, y-3/4, -z+1/2' 'x-1/4, -y, z-1/4' '-x+1/2, y-3/4, z-1/4' '-x+1/2, -y+1/2, -z' 'x-1/4, y-1/4, -z' 'x-1/4, -y+1/2, z-3/4' '-x+1/2, y-1/4, z-3/4' _cell_length_a 9.5534(10) _cell_length_b 12.6764(13) _cell_length_c 15.8145(17) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1915.2(3) _cell_formula_units_Z 8 _cell_measurement_temperature 173(2) _cell_measurement_reflns_used 3091 _cell_measurement_theta_min 2.96 _cell_measurement_theta_max 27.09 _exptl_crystal_recrystallization_method 'Slow cooling' _diffrn_ambient_pressure 101 _exptl_crystal_description 'Prism' _exptl_crystal_colour 'colourless' _exptl_crystal_size_min 0.11 _exptl_crystal_size_mid 0.171 _exptl_crystal_size_max 0.342 _exptl_crystal_density_diffrn 1.250 _exptl_crystal_F_000 752 _exptl_absorpt_coefficient_mu 0.076 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.7022 _exptl_absorpt_correction_T_max 0.7456 _exptl_absorpt_process_details ; SADABS (Bruker, 2008) ; _exptl_special_details ; A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device. ; loop_ _exptl_crystal_face_index_h _exptl_crystal_face_index_k _exptl_crystal_face_index_l _exptl_crystal_face_perp_dist 0.00 0.00 -1.00 0.0550 0.00 0.00 1.00 0.0380 0.00 1.00 0.00 0.1650 0.00 -1.00 0.00 0.1260 1.00 -1.00 0.00 0.0770 -1.00 1.00 0.00 0.0910 1.00 -1.00 -1.00 0.0730 1.00 0.00 0.00 0.1300 1.00 1.00 0.00 0.1400 -2.00 1.00 -1.00 0.0550 _diffrn_ambient_temperature 173(2) _diffrn_radiation_probe x-ray _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_source 'fine-focus sealed tube' _diffrn_source_type 'Bruker D8' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ; Bruker ApexII CCD area-detector diffractometer ; _diffrn_measurement_method 'phi and omega scans' _diffrn_reflns_number 6353 _diffrn_reflns_av_R_equivalents 0.0191 _diffrn_reflns_av_sigmaI/netI 0.0082 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -16 _diffrn_reflns_limit_k_max 16 _diffrn_reflns_limit_l_min -20 _diffrn_reflns_limit_l_max 20 _diffrn_reflns_theta_min 2.96 _diffrn_reflns_theta_max 27.32 _reflns_number_total 542 _reflns_number_gt 452 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'APEX2 (Bruker, 2008)' _computing_cell_refinement 'SAINT-Plus (Bruker, 2008)' _computing_data_reduction 'SAINT-Plus' _computing_structure_solution 'SHELXS (Sheldrick, 2008)' # if use Dual Space, write: 'SHELXD (Sheldrick, 2008)' _computing_structure_refinement 'SHELXTL (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae et al., 2006)' _computing_publication_material 'publCIF (Westrip, 2010)' # Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison # Wisconsin, USA. # Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. # Macrae, D. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., # Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, # 453-457. # Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925. _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0637P)^2^+0.5559P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_number_reflns 542 _refine_ls_number_parameters 34 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0432 _refine_ls_R_factor_gt 0.0360 _refine_ls_wR_factor_ref 0.1128 _refine_ls_wR_factor_gt 0.1061 _refine_ls_goodness_of_fit_ref 1.121 _refine_ls_restrained_S_all 1.121 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N N 0.1250 0.1250 0.31942(8) 0.0546(4) Uani 1 2 d S . . C1 C 0.17702(12) 0.04498(10) 0.36379(7) 0.0557(4) Uani 1 1 d . . . H1 H 0.2153 -0.0129 0.3335 0.067 Uiso 1 1 calc R . . C2 C 0.17910(12) 0.04057(9) 0.45110(7) 0.0526(4) Uani 1 1 d . . . H2 H 0.2168 -0.0190 0.4795 0.063 Uiso 1 1 calc R . . C3 C 0.1250 0.1250 0.49649(8) 0.0449(4) Uani 1 2 d S . . C4 C 0.1250 0.1250 0.58741(9) 0.0498(4) Uani 1 2 d S . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N 0.0723(9) 0.0589(8) 0.0327(6) 0.000 0.000 -0.0111(6) C1 0.0713(8) 0.0594(7) 0.0362(6) -0.0060(4) 0.0001(5) -0.0031(5) C2 0.0607(7) 0.0607(7) 0.0363(6) 0.0015(4) -0.0050(4) -0.0001(5) C3 0.0423(7) 0.0636(9) 0.0286(7) 0.000 0.000 -0.0086(6) C4 0.0469(8) 0.0687(10) 0.0337(7) 0.000 0.000 -0.0033(6) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N C1 1.3298(14) . ? C1 C2 1.3819(16) . ? C1 H1 0.9500 . ? C2 C3 1.3885(14) . ? C2 H2 0.9500 . ? C3 C4 1.438(2) . ? C4 C4 1.189(3) 11_455 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 N C1 116.30(13) 14_445 . ? N C1 C2 124.30(11) . . ? N C1 H1 117.9 . . ? C2 C1 H1 117.9 . . ? C1 C2 C3 118.68(10) . . ? C1 C2 H2 120.7 . . ? C3 C2 H2 120.7 . . ? C2 C3 C2 117.74(13) . 14_445 ? C2 C3 C4 121.13(7) . . ? C4 C4 C3 180.0 11_455 . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C1 N C1 C2 0.34(8) 14_445 . . . ? N C1 C2 C3 -0.66(15) . . . . ? C1 C2 C3 C2 0.30(7) . . . 14_445 ? C1 C2 C3 C4 -179.70(7) . . . . ? _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 25.25 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.131 _refine_diff_density_min -0.138 _refine_diff_density_rms 0.029 _iucr_refine_instruction_details ; TITL RB11016 in Fddd CELL 0.71073 9.5534 12.6764 15.8145 90.000 90.000 90.000 ZERR 8.00 0.0010 0.0013 0.0017 0.000 0.000 0.000 LATT 4 SYMM 0.75-X, 0.75-Y, Z SYMM 0.75-X, Y, 0.75-Z SYMM X, 0.75-Y, 0.75-Z SFAC C H N UNIT 96 64 16 L.S. 18 BOND $H CONF ACTA 50.5 MPLA 4 N C1 C2 C3 FMAP 2 PLAN 6 SIZE 0.11 0.171 0.342 TEMP -100.000 REM EXTI 0.001149 WGHT 0.063700 0.555900 FVAR 0.09872 N 3 0.125000 0.125000 0.319423 10.50000 0.07231 0.05890 = 0.03270 0.00000 0.00000 -0.01110 C1 1 0.177022 0.044983 0.363794 11.00000 0.07132 0.05940 = 0.03624 -0.00601 0.00015 -0.00310 AFIX 43 H1 2 0.215267 -0.012949 0.333489 11.00000 -1.20000 AFIX 0 C2 1 0.179105 0.040567 0.451097 11.00000 0.06066 0.06070 = 0.03634 0.00153 -0.00498 -0.00011 AFIX 43 H2 2 0.216803 -0.019050 0.479494 11.00000 -1.20000 AFIX 0 C3 1 0.125000 0.125000 0.496485 10.50000 0.04231 0.06365 = 0.02863 0.00000 0.00000 -0.00862 C4 1 0.125000 0.125000 0.587408 10.50000 0.04691 0.06866 = 0.03372 0.00000 0.00000 -0.00331 HKLF 4 END ;