European Journal of Chemistry

Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3

Crossmark


Main Article Content

Muktar Musa Ibrahim
Hamza Rabiu Sani
Khuzaifa Muhammad Yahuza
Aminu Hassan Yusuf
Ahmad Bello Bungudu

Abstract

Caffeine is a refractory pollutant of emerging concern that evades conventional waste-water treatment techniques. Here, we report the synthesis of visible light responsive perovskite structured LaMnO­3 photocatalyst using modified Pechini method and utilized it as an efficient photocatalyst for caffeine degradation. XRD, BET, UV-Vis, NH3-TPD, and SEM were used to characterize the photocatalyst. Response surface methodology using Central composite design was used to investigate the effect of three operational variables; catalyst dosage, initial caffeine concentration and pH on the caffeine photocatalytic degradation efficiency. The functional relationship between these operational variables and caffeine photocatalytic degradation efficiency was established be a second order polynomial model. The results of the response surface analysis indicate caffeine degradation efficiency is most significantly affected by catalyst dosage and pH. The optimal values of operational obtained by response surface optimization were found be 3.5 g/L for catalyst dosage, 7.9 and 44.6 mg/L for pH and initial caffeine concentration respectively given the caffeine degradation efficiency of 93.9%.


icon graph This Abstract was viewed 496 times | icon graph Article PDF downloaded 200 times

How to Cite
(1)
Ibrahim, M. M.; Sani, H. R.; Yahuza, K. M.; Yusuf, A. H.; Bungudu, A. B. Response Surface Optimization and Modeling of Caffeine Photocatalytic Degradation Using Visible Light Responsive Perovskite Structured LaMnO3. Eur. J. Chem. 2021, 12, 289-298.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S. E. A. T. M.; Ritsema, C. J. Int. Soil Water Conserv. Res. 2015, 3 (1), 57-65.
https://doi.org/10.1016/j.iswcr.2015.03.002

[2]. Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Food Addit. Contam. 2003, 20 (1), 1-30.
https://doi.org/10.1080/0265203021000007840

[3]. Moore, M. T.; Greenway, S. L.; Farris, J. L.; Guerra, B. Arch. Environ. Contam. Toxicol. 2008, 54 (1), 31-35.
https://doi.org/10.1007/s00244-007-9059-4

[4]. Ibrahim, M. M.; Gaya, U. I. J. Chil. Chem. Soc. 2019, 64 (1), 4275-4284.
https://doi.org/10.4067/s0717-97072019000104275

[5]. Sahoo, C.; Gupta, A. K. J. Hazard. Mater. 2012, 215-216, 302-310.
https://doi.org/10.1016/j.jhazmat.2012.02.072

[6]. Kumar, A.; Kumar, S.; Krishnan, V. Perovskite-Based Materials for Photocatalytic Environmental Remediation. In Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, 2019; pp 139-165.
https://doi.org/10.1007/978-3-030-10609-6_5

[7]. Susanti, Y. D.; Afifah, N.; Saleh, R. Comparison between Photo- and Sono- Catalytic Activities of LaMnO3/Fe3O4/NGP to Remove Methylene Blue from Wastewater; AIP Conference Proceedings, 1-6, 2018. Available online: https://doi.org/10.1063/1.5064033
https://doi.org/10.1063/1.5064033

[8]. Gaya, U. I. Eur. J. Chem. 2011, 2 (2), 163-167.
https://doi.org/10.5155/eurjchem.2.2.163-167.369

[9]. Sujatha, G.; Shanthakumar, S.; Chiampo, F. Environments 2020, 7 (6), 47.
https://doi.org/10.3390/environments7060047

[10]. Barrocas, B.; Neves, M. C.; Conceicao Oliveira, M.; Monteiro, O. C. Environ. Sci. Nano 2018, 5 (2), 350-361.
https://doi.org/10.1039/C7EN00882A

[11]. Wang, Y.; Wang, Y.; Yu, L.; Wang, J.; Du, B.; Zhang, X. Chem. Eng. J. 2019, 368, 115-128.
https://doi.org/10.1016/j.cej.2019.02.174

[12]. Vu, A.-T.; Tuyet Pham, T. A.; Tran, T. T.; Nguyen, X. T.; Tran, T. Q.; Tran, Q. T.; Nguyen, T. N.; Van Doan, T.; Vi, T. D.; Nguyen, C. L.; Nguyen, M. V.; Lee, C.-H. Bull. Chem. React. Eng. Catal. 2020, 15 (1), 264-279.
https://doi.org/10.9767/bcrec.15.1.5892.264-279

[13]. Dhiman, T. K.; Singh, S. Phys. Status Solidi (a) 2019, 216 (11), 1900012.
https://doi.org/10.1002/pssa.201900012

[14]. Ghiasi, E.; Malekzadeh, A. J. Inorg. Organomet. Polym. Mater. 2020, 30 (7), 2789-2804.
https://doi.org/10.1007/s10904-019-01438-z

[15]. Abdolrahmani, M.; Parvari, M.; Habibpoor, M. Cuihua Xuebao/Chin. J. Catalysis 2010, 31 (4), 394-403.
https://doi.org/10.1016/S1872-2067(09)60059-0

[16]. Shaterian, M.; Enhessari, M.; Rabbani, D.; Asghari, M.; Salavati-Niasari, M. Appl. Surf. Sci. 2014, 318, 213-217.
https://doi.org/10.1016/j.apsusc.2014.03.087

[17]. Abdullah, E. A. Eur. J. Chem. 2019, 10 (1), 82-94.
https://doi.org/10.5155/eurjchem.10.1.82-94.1809

[18]. Hu, J.; Ma, J.; Wang, L.; Huang, H. J. Alloys Compd. 2014, 583, 539-545.
https://doi.org/10.1016/j.jallcom.2013.09.030

[19]. Hu, J.; Ma, J.; Wang, L.; Huang, H.; Ma, L. Powder Technol. 2014, 254, 556-562.
https://doi.org/10.1016/j.powtec.2014.01.071

[20]. Azfar, A. K.; Kasim, M. F.; Lokman, I. M.; Rafaie, H. A.; Mastuli, M. S. R. Soc. Open Sci. 2020, 7 (2), 191590.
https://doi.org/10.1098/rsos.191590

[21]. Pei, Z.; Wang, P.; Li, Z. Eur. J. Chem. 2019, 10 (1), 7-11
https://doi.org/10.5155/eurjchem.10.1.7-11.1824

[22]. Sakkas, V. A.; Islam, M. A.; Stalikas, C.; Albanis, T. A. J. Hazard. Mater. 2010, 175 (1-3), 33-44.
https://doi.org/10.1016/j.jhazmat.2009.10.050

[23]. Arandiyan, H.; Wang, Y.; Scott, J.; Mesgari, S.; Dai, H.; Amal, R. ACS Appl. Mater. Interfaces 2018, 10 (19), 16352-16357.
https://doi.org/10.1021/acsami.8b00889

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).