European Journal of Chemistry

Crystal structure, Hirshfeld surface, and DFT studies of 4-((pyrrolidin-1-ylsulfonyl)methyl)aniline

Crossmark


Main Article Content

Soundararajan Krishnan
Thanigaimani Kaliyaperumal
Ramalingam Marimuthu
Sethuraman Velusamy

Abstract

The crystal structure investigation of the title compound 4-((pyrrolidin-1-ylsulfonyl) methyl)aniline (PSMA) C11H16N2O2S shows that the molecule is essentially coplanar with a dihedral angle of 26.70(14)°between the pyrrolidine and the benzene rings. A pair of strong N-H···O hydrogen bonds produces continuous two-dimensional sheets with R22(18) ring motifs. The crystal structure also features a weak C-H···π interaction resulting in a three-dimensional network. Density functional theory (DFT) calculations reveal that the experimental and calculated geometric parameters of the molecule are nearly the same. Hirshfeld surface analysis has been carried out to study the various intermolecular interactions responsible for the crystal packing. Theoretical calculations indicate an excellent correlation between the experimental and the simulated UV spectra.


icon graph This Abstract was viewed 476 times | icon graph Article PDF downloaded 176 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Krishnan, S.; Kaliyaperumal, T.; Marimuthu, R.; Velusamy, S. Crystal Structure, Hirshfeld Surface, and DFT Studies of 4-(pyrrolidin-1-ylsulfonyl)methyl)aniline. Eur. J. Chem. 2021, 12, 419-431.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Wilcox, R. W. Medical News 1900, 15, 931-932.

[2]. Bentley, R. J. Ind. Microbiol. Biotechnol. 2009, 36 (6), 775-786.
https://doi.org/10.1007/s10295-009-0553-8

[3]. Sonu; Rabiya Parveen, B.; Praveen, S.; Pal, H. Int. J. Pharm. Chem. 2017, 7 (5), 70-73.

[4]. Iqbal, R.; Zareef, M.; Ahmed, S.; Zaidi, J. H.; Arfan, M.; Shafique, M.; Al-Masoudi, N. A. J. Chin. Chem. Soc. 2006, 53 (3), 689-696.
https://doi.org/10.1002/jccs.200600091

[5]. Saingar, S.; Kumar, R.; Joshi, Y. C. Med. Chem. Res. 2011, 20 (7), 975-980.
https://doi.org/10.1007/s00044-010-9430-2

[6]. Schreiber, K. J.; Austin, R. S.; Gong, Y.; Zhang, J.; Fung, P.; Wang, P. W.; Guttman, D. S.; Desveaux, D. BMC Plant Biol. 2012, 12 (1), 226-235.
https://doi.org/10.1186/1471-2229-12-226

[7]. Shah, S. S. A.; Rivera, G.; Ashfaq, M. Mini Rev. Med. Chem. 2013, 13 (1), 70-86.
https://doi.org/10.2174/138955713804484749

[8]. Supuran, C. T. Curr. Med. Chem. 2012, 19 (6), 831-844.
https://doi.org/10.2174/092986712799034824

[9]. Wulf, N. R.; Matuszewski, K. A. Am. J. Health. Syst. Pharm. 2013, 70 (17), 1483-1494.
https://doi.org/10.2146/ajhp120291

[10]. Owa, T.; Nagasu, T. Expert Opin. Ther. Pat. 2000, 10 (11), 1725-1740.
https://doi.org/10.1517/13543776.10.11.1725

[11]. Supuran, C. T.; Scozzafava, A.; Casini, A. Med. Res. Rev. 2003, 23 (2), 146-189.
https://doi.org/10.1002/med.10025

[12]. Supuran, C. T.; Scozzafava, A. Expert Opin. Ther. Pat. 2002, 12 (2), 217-242.
https://doi.org/10.1517/13543776.12.2.217

[13]. Supuran, C.; Scozzafava, A. Curr. Med. Chem. Immunol. Endocr. Metab. Agents 2001, 1 (1), 61-97.
https://doi.org/10.2174/1568013013359131

[14]. Maren, T. H. Annu. Rev. Pharmacol. Toxicol. 1976, 16 (1), 309-327.
https://doi.org/10.1146/annurev.pa.16.040176.001521

[15]. Supuran, C. T.; Conroy, C. W.; Maren, T. H. Eur. J. Med. Chem. 1996, 31 (11), 843-846.
https://doi.org/10.1016/S0223-5234(97)89847-9

[16]. Boyd, A. E. Diabetes 1988, 37 (7), 847-850.
https://doi.org/10.2337/diab.37.7.847

[17]. Thaisrivongs, S.; Skulnick, H. I.; Turner, S. R.; Strohbach, J. W.; Tommasi, R. A.; Johnson, P. D.; Aristoff, P. A.; Judge, T. M.; Gammill, R. B.; Morris, J. K.; Romines, K. R.; Chrusciel, R. A.; Hinshaw, R. R.; Chong, K. T.; Tarpley, W. G.; Poppe, S. M.; Slade, D. E.; Lynn, J. C.; Horng, M. M.; Tomich, P. K.; Seest, E. P.; Dolak, L. A.; Howe, W. J.; Howard, G. M.; Watenpaugh, K. D. J. Med. Chem. 1996, 39 (22), 4349-4353.
https://doi.org/10.1021/jm960541s

[18]. Supuran, C. T.; Scozzafava, A.; Clare, B. W. Med. Res. Rev. 2002, 22 (4), 329-372.
https://doi.org/10.1002/med.10007

[19]. Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2000, 43 (20), 3677-3687.
https://doi.org/10.1021/jm000027t

[20]. Thornber, C. W. Chem. Soc. Rev. 1979, 8 (4), 563-580.
https://doi.org/10.1039/cs9790800563

[21]. Lavanya, R. Inter. J. Pharm. Sci. Invent. 2017, 6 (2), 1-3.

[22]. Keam, S. J.; Goa, K. L.; Figgitt, D. P. Drugs 2002, 62 (2), 387-414.
https://doi.org/10.2165/00003495-200262020-00010

[23]. Manikandan, D.; Swaminathan, J.; Tagore, S. S.; Gomathi, S.; Sabarinathan, N.; Ramalingam, M.; Balasubramani, K.; Sethuraman, V. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 239 (118484), 118484.
https://doi.org/10.1016/j.saa.2020.118484

[24]. Bruker, SMART APEX2, SAINT ABD SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2008.

[25]. Sheldrick, G. M Acta Crystallogr. A 2008, 64 (Pt 1), 112-122.
https://doi.org/10.1107/S0108767307043930

[26]. Sheldrick, G. M. Acta Crystallogr. A Found. Adv. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053273314026370

[27]. Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648-5652.
https://doi.org/10.1063/1.464913

[28]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 03, Revision E.01, Wallingford CT, 2004.

[29]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 09, Revision B.01, Wallingford CT, 2010.

[30]. Ortmann, F.; Bechstedt, F.; Schmidt, W. G. Phys. Rev. B 2006, 73 (20), 205101, 1-10.
https://doi.org/10.1103/PhysRevB.73.205101

[31]. Hirshfeld, F. L. Theoret. Chim. Acta 1977, 44 (2), 129-138.
https://doi.org/10.1007/BF00549096

[32]. Spackman, M. A.; Byrom, P. G. Chem. Phys. Lett. 1997, 267 (3-4), 215-220.
https://doi.org/10.1016/S0009-2614(97)00100-0

[33]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ 2017, 4 (Pt 5), 575-587.
https://doi.org/10.1107/S205225251700848X

[34]. Malenov, D. P.; Janjić, G. V.; Medaković, V. B.; Hall, M. B.; Zarić, S. D. Coord. Chem. Rev. 2017, 345, 318-341.
https://doi.org/10.1016/j.ccr.2016.12.020

[35]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. (Camb.) 2007, No. 37, 3814-3816.
https://doi.org/10.1039/b704980c

[36]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Guy Orpen, A.; Taylor, R. J. Chem. Soc. Perkin Trans. 2 1987, 12, S1-S19.
https://doi.org/10.1039/p298700000s1

[37]. Ravikumar, K.; Sridhar, B.; Krishnan, H.; Singh, A. N. Acta Crystallogr. C 2008, 64 (Pt 1), o15-7.
https://doi.org/10.1107/S0108270107060507

[38]. Sridhar, B.; Ravikumar, K.; Krishnan, H.; Singh, A. N. J. Chem. Crystallogr. 2011, 41 (3), 291-296.
https://doi.org/10.1007/s10870-010-9875-7

[39]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[40]. Koenderink, J. J.; van Doorn, A. J. Image Vis. Comput. 1992, 10 (8), 557-564.
https://doi.org/10.1016/0262-8856(92)90076-F

[41]. Koenderink, J. J. Solid Shape; MIT Press: London, England, 1990.

[42]. Bondi, A. J. Phys. Chem. 1964, 68 (3), 441-451.
https://doi.org/10.1021/j100785a001

[43]. Gumus, I.; Solmaz, U.; Gonca, S.; Arslan, H. Eur. J. Chem. 2017, 8 (4), 349-357.
https://doi.org/10.5155/eurjchem.8.4.349-357.1637

[44]. Khan, I.; Panini, P.; Khan, S. U.-D.; Rana, U. A.; Andleeb, H.; Chopra, D.; Hameed, S.; Simpson, J. Cryst. Growth Des. 2016, 16 (3), 1371-1386.
https://doi.org/10.1021/acs.cgd.5b01499

[45]. Spackman, M. A.; McKinnon, J. J CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B

[46]. Turner, M. J.; Grabowsky, S.; Jayatilaka, D.; Spackman, M. A. J. Phys. Chem. Lett. 2014, 5 (24), 4249-4255.
https://doi.org/10.1021/jz502271c

[47]. Spackman, M. A.; Spackman, P. R.; Thomas, S. P. 13 Beyond Hirshfeld Surface Analysis: Interaction Energies, Energy Frameworks and Lattice Energies with CrystalExplorer. In Complementary Bonding Analysis; De Gruyter, 2021; pp 329-352.
https://doi.org/10.1515/9783110660074-013

[48]. Maginn, S. J. J. Appl. Crystallogr. 1991, 24 (3), 265-265.
https://doi.org/10.1107/S0021889890005878

[49]. Martin, R. L. J. Chem. Phys. 2003, 118 (11), 4775-4777.
https://doi.org/10.1063/1.1558471

[50]. Stowasser, R.; Hoffmann, R. J. Am. Chem. Soc. 1999, 121 (14), 3414-3420.
https://doi.org/10.1021/ja9826892

[51]. Zhang, G.; Musgrave, C. B. J. Phys. Chem. A 2007, 111 (8), 1554-1561.
https://doi.org/10.1021/jp061633o

[52]. Zhan, C.-G.; Nichols, J. A.; Dixon, D. A. J. Phys. Chem. A 2003, 107 (20), 4184-4195.
https://doi.org/10.1021/jp0225774

[53]. Gunasekaran, S.; Arun Balaji, R.; Kumaresan, S.; Anand, G.; Srinivasan, S. Can. J. Anal. Sci. Spectrosc. 2008, 53, 149-162.

[54]. Lewis, D. F. V.; Ioannides, C.; Parke, D. V. Xenobiotica 1994, 24 (5), 401-408.
https://doi.org/10.3109/00498259409043243

[55]. Padmaja, L.; Ravikumar, C.; Sajan, D.; Hubert Joe, I.; Jayakumar, V. S.; Pettit, G. R.; Faurskov Nielsen, O. J. Raman Spectrosc. 2009, 40 (4), 419-428.
https://doi.org/10.1002/jrs.2145

[56]. Ravikumar, C.; Joe, I. H.; Jayakumar, V. S. Chem. Phys. Lett. 2008, 460 (4-6), 552-558.
https://doi.org/10.1016/j.cplett.2008.06.047

[57]. Pîrnău, A.; Chiş, V.; Oniga, O.; Leopold, N.; Szabo, L.; Baias, M.; Cozar, O. Vib. Spectrosc. 2008, 48 (2), 289-296.
https://doi.org/10.1016/j.vibspec.2008.01.012

[58]. Liu, S. J. Chem. Sci. (Bangalore) 2005, 117 (5), 477-483.
https://doi.org/10.1007/BF02708352

[59]. Sharmila Tagore, S.; Swaminathan, J.; Manikandan, D.; Gomathi, S.; Sabarinathan, N.; Ramalingam, M.; Sethuraman, V. Heliyon 2021, 7 (4), e06593.
https://doi.org/10.1016/j.heliyon.2021.e06593

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).