European Journal of Chemistry

Bivalent metal complexes of a novel modified nicotinic acid hydrazide drug: Synthesis, characterization, and anti-tubercular studies

Crossmark


Main Article Content

Cyprian Chunkang Mikwa
Gwendoline Mochia Toh-Boyo
Romanus Nyako Njong
Bridget Ndosiri Ndoye
Christophe Adrien Ndamyabera
Natsuki Katsuumi
Yuta Mitani
Emmanuel Ngwang Nfor
Takashiro Akitsu

Abstract

Iron(II) and manganese(II) complexes of N'-(1-(pyridin-2-yl)ethylidene)nicotinohydrazide (LH) have been synthesized and characterized by elemental analysis, IR, and 1H NMR spectroscopy. The crystal structure of the ligand has been determined by single crystal X-ray diffraction and electronic spectroscopic techniques. Crystal data for LH, C13H12N4O: Orthorhombic, space group Pbcn (no. 60), a = 18.0824(3) Å, b = 7.86555(14) Å, c = 16.1614(3) Å, = 2298.60(7) Å3, Z = 8, T = 103 K, μ(Mo Kα) = 0.093 mm-1, Dcalc = 1.388 g/cm3, 36729 reflections measured (5.042° ≤ 2Θ ≤ 54.966°), 2633 unique (Rint = 0.0224, Rsigma = 0.0124) which were used in all calculations. The final R1 was 0.0383 (F2>2σ(F2)) and wR2 was 0.0988 (all data). The ligand was found to chelate to the metal ions through the azomethine nitrogen and amide oxygen atoms in a bidentate manner. The anti-tubercular activity of the ligand, its iron (II) and manganese (II) complexes were studied against Mycobacterium tuberculosis (ATTC 27294). The results revealed higher activity of the iron (II) complex with MIC value of 8.00±0.83 µM and a moderate activity of the manganese (II) complex having MIC value of 14.20±1.40 µM, compared to the reference drugs having MIC values of 9.41±0.92, 10.74±1.02, 25.34±2.6 µM and parent ligand with MIC value of 17.60±1.80 µM.


icon graph This Abstract was viewed 825 times | icon graph Article PDF downloaded 237 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Mikwa, C. C.; Toh-Boyo, G. M.; Njong, R. N.; Ndoye, B. N.; Ndamyabera, C. A.; Katsuumi, N.; Mitani, Y.; Nfor, E. N.; Akitsu, T. Bivalent Metal Complexes of a Novel Modified Nicotinic Acid Hydrazide Drug: Synthesis, Characterization, and Anti-Tubercular Studies. Eur. J. Chem. 2022, 13, 63-68.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Judge, V.; Narasimhan, B.; Ahuja, M. Isoniazid: The Magic Molecule. Med. Chem. Res. 2012, 21 (12), 3940-3957.
https://doi.org/10.1007/s00044-011-9948-y

[2]. van den Boogaard, J.; Kibiki, G. S.; Kisanga, E. R.; Boeree, M. J.; Aarnoutse, R. E. New Drugs against Tuberculosis: Problems, Progress, and Evaluation of Agents in Clinical Development. Antimicrob. Agents Chemother. 2009, 53 (3), 849-862.
https://doi.org/10.1128/AAC.00749-08

[3]. World Health Organization, Global Tuberculosis Report, 2017. https://www.who.int/tb/publications/global_report/gtbr2017 (accessed Nov 19, 2021).

[4]. Prozorov, A. A.; Zaichikova, M. V.; Danilenko, V. N. Mycobacterium Tuberculosis Mutants with Multidrug Resistance: History of Origin, Genetic and Molecular Mechanisms of Resistance, and Emerging Challenges. Russ. J. Genet. 2012, 48 (1), 1-14.
https://doi.org/10.1134/S1022795411120118

[5]. Sotgiu, G.; Ferrara, G.; Matteelli, A.; Richardson, M. D.; Centis, R.; Ruesch-Gerdes, S.; Toungoussova, O.; Zellweger, J.-P.; Spanevello, A.; Cirillo, D.; Lange, C.; Migliori, G. B. Epidemiology and Clinical Management of XDR-TB: A Systematic Review by TBNET. Eur. Respir. J. 2009, 33 (4), 871-881.
https://doi.org/10.1183/09031936.00168008

[6]. Hoagland, D. T.; Liu, J.; Lee, R. B.; Lee, R. E. New Agents for the Treatment of Drug-Resistant Mycobacterium Tuberculosis. Adv. Drug Deliv. Rev. 2016, 102, 55-72.
https://doi.org/10.1016/j.addr.2016.04.026

[7]. Wong, E. B.; Cohen, K. A.; Bishai, W. R. Rising to the Challenge: New Therapies for Tuberculosis. Trends Microbiol. 2013, 21 (9), 493-501.
https://doi.org/10.1016/j.tim.2013.05.002

[8]. Ellis, S.; Kalinowski, D. S.; Leotta, L.; Huang, M. L. H.; Jelfs, P.; Sintchenko, V.; Richardson, D. R.; Triccas, J. A. Potent Antimycobacterial Activity of the Pyridoxal Isonicotinoyl Hydrazone Analog 2-Pyridylcarboxaldehyde Isonicotinoyl Hydrazone: A Lipophilic Transport Vehicle for Isonicotinic Acid Hydrazide. Mol. Pharmacol. 2014, 85 (2), 269-278.
https://doi.org/10.1124/mol.113.090357

[9]. Chaves, J. D. S.; Damasceno, J. L.; Paula, M. C. F.; de Oliveira, P. F.; Azevedo, G. C.; Matos, R. C.; Lourenço, M. C. S.; Tavares, D. C.; Silva, H.; Fontes, A. P. S.; de Almeida, M. V. Synthesis, Characterization, Cytotoxic and Antitubercular Activities of New Gold(I) and Gold(III) Complexes Containing Ligands Derived from Carbohydrates. Biometals 2015, 28 (5), 845-860.
https://doi.org/10.1007/s10534-015-9870-8

[10]. Oludina, Y. N.; Voloshina, A. D.; Kulik, M. V.; Zobov, V. V.; Bukharov, S. V.; Tagasheva, R. G.; Nugumanova, G. N.; Burilov, A. R.; Kravchenko, M. A.; Skornyakov, S. N.; Rusinov, G. L. Synthesis, Toxicity, and Antituberculosis Activity of Isoniazid Derivatives Containing Sterically Hindered Phenols. Pharm. Chem. J. 2014, 48 (1), 5-7.
https://doi.org/10.1007/s11094-014-1032-8

[11]. Parumasivam, T.; Naveen Kumar, H. S.; Ibrahim, P.; Sadikun, A.; Mohamad, S. Anti-Tuberculosis Activity of Lipophilic Isoniazid Derivatives and Their Interactions with First-Line Anti-Tuberculosis Drugs. J. Pharm. Res. 2013, 7 (4), 313-317.
https://doi.org/10.1016/j.jopr.2013.04.039

[12]. Matei, L.; Bleotu, C.; Baciu, I.; Draghici, C.; Ionita, P.; Paun, A.; Chifiriuc, M. C.; Sbarcea, A.; Zarafu, I. Synthesis and Bioevaluation of Some New Isoniazid Derivatives. Bioorg. Med. Chem. 2013, 21 (17), 5355-5361.
https://doi.org/10.1016/j.bmc.2013.06.013

[13]. Ramani, A. V.; Monika, A.; Indira, V. L.; Karyavardhi, G.; Venkatesh, J.; Jeankumar, V. U.; Manjashetty, T. H.; Yogeeswari, P.; Sriram, D. Synthesis of Highly Potent Novel Anti-Tubercular Isoniazid Analogues with Preliminary Pharmacokinetic Evaluation. Bioorg. Med. Chem. Lett. 2012, 22 (8), 2764-2767.
https://doi.org/10.1016/j.bmcl.2012.02.091

[14]. Naveen Kumar, H. S.; Parumasivam, T.; Jumaat, F.; Ibrahim, P.; Asmawi, M. Z.; Sadikun, A. Synthesis and Evaluation of Isonicotinoyl Hydrazone Derivatives as Antimycobacterial and Anticancer Agents. Med. Chem. Res. 2014, 23 (1), 269-279.
https://doi.org/10.1007/s00044-013-0632-2

[15]. Toh-Boyo, G. M.; Njong, R. N.; Babette, E. M.; Nfor, E. N. Synthesis, Spectroscopic, Molecular Modeling and Anti-Fungal Studies of Some Divalent Metal Complexes of 4-Hydroxyacetophenone Isonicotinoyl Hydrazone. Open J. Inorg. Chem. 2021, 11 (03), 95-109.
https://doi.org/10.4236/ojic.2021.113007

[16]. Nfor, E. N.; Husian, A.; Majoumo-Mbe, F.; Njah, I. N.; Offiong, O. E.; Bourne, S. A. Synthesis, Crystal Structure and Antifungal Activity of a Ni(II) Complex of a New Hydrazone Derived from Antihypertensive Drug Hydralazine Hydrochloride. Polyhedron 2013, 63, 207-213.
https://doi.org/10.1016/j.poly.2013.07.028

[17]. Majoumo-Mbe, F.; Nfor, E. N.; Sengeh, E. B.; Njong, R. N.; Offiong, O. E. 3.3.2. Synthesis, Crystal Structure and Biological Activity of 1-(Phthalazin-1(2H)-One)[(Pyridin-2-Yl)Ethylidene]Hydrazone and Its Cobalt (III) Complex. Commun. Inorg. Synth. 2015, 3 (3), 40-46. https://doi.org/10.21060/cis.v3i3.2260.

[18]. Majoumo-Mbe, F.; Nfor, N. E.; Kenfack Tsobnang, P.; Nguepmeni Eloundou, V. B.; Ngwain Yong, J.; Iris Efeti, I. Synthesis, Molecular and Crystal Structure of 1-(1,2-Dihydrophthalazin-1-Ylidene)-2-[1-(Thiophen-2-Yl)Ethylidene]Hydrazine. Acta Crystallogr. E Crystallogr. Commun. 2019, 75 (2), 251-254.
https://doi.org/10.1107/S2056989019000732

[19]. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64 (Pt 1), 112-122.
https://doi.org/10.1107/S0108767307043930

[20]. Sheldrick, G. M. Crystal Structure Refinement WithSHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218

[21]. Rigaku. CrystalStructure. Rigaku Corporation, Tokyo, Japan, 2010.

[22]. Lourenco, M. C.; de Souza, M. V. N.; Pinheiro, A. C.; Ferreira, M. L.; Goncalves, R. S. B.; Nogneira, T. C. M.; Peralta, M. A. Evaluation of Anti-Tubercular Activity of Nicotinic and Isoniazid Analogues. ARKIVOC 2007, 2007 (15), 181-191.
https://doi.org/10.3998/ark.5550190.0008.f18

[23]. Pahontu, E.; Fala, V.; Gulea, A.; Poirier, D.; Tapcov, V.; Rosu, T. Synthesis and Characterization of Some New Cu(II), Ni(II) and Zn(II) Complexes with Salicylidene Thiosemicarbazones: Antibacterial, Antifungal and in Vitro Antileukemia Activity. Molecules 2013, 18 (8), 8812-8836.
https://doi.org/10.3390/molecules18088812

[24]. Muthukumar, M.; Viswanathamurthi, P. Synthesis, Spectral Characterization and Catalytic Studies of New Ruthenium(II) Chalcone Thiosemicarbazone Complexes. Open Chem. 2010, 8 (1), 229-240.
https://doi.org/10.2478/s11532-009-0116-x

[25]. Ouf, A. E.-F.; Ali, M. S.; Saad, E. M.; Mostafa, S. I. PH-Metric and Spectroscopic Properties of New 4-Hydroxysalicylidene-2-Aminopyrimidine Schiff-Base Transition Metal Complexes. J. Mol. Struct. 2010, 973 (1-3), 69-75.
https://doi.org/10.1016/j.molstruc.2010.03.037

[26]. Nakamoto, K.; Ohkaku, N. Metal Isotope Effect on Metal-Ligand Vibrations. VI. Metal Complexes of 8-Hydroxyquinoline. Inorg. Chem. 1971, 10 (4), 798-805.
https://doi.org/10.1021/ic50098a027

[27]. Naglah, A. M.; Awad, H. M.; Bhat, M. A.; Al-Omar, M. A.; Amr, A. E.-G. E. Microwave-Assisted Synthesis and Antimicrobial Activity of Some Novel Isatin Schiff Bases Linked to Nicotinic Acid via Certain Amino Acid Bridge. J. Chem. 2015, 2015, 1-8.
https://doi.org/10.1155/2015/364841

[28]. Khor, Z. C.; Low, M. L.; Ling, I. Schiff Bases and Their Copper(II) Complexes Derived from Cinnamaldehyde and Different Hydrazides: Synthesis and Antibacterial Properties. J. Transit. Met. Complexes 2020, 3, 1-9.
https://doi.org/10.32371/jtmc/236087

[29]. Velezheva, V.; Brennan, P.; Ivanov, P.; Kornienko, A.; Lyubimov, S.; Kazarian, K.; Nikonenko, B.; Majorov, K.; Apt, A. Synthesis and Antituberculosis Activity of Indole-Pyridine Derived Hydrazides, Hydrazide-Hydrazones, and Thiosemicarbazones. Bioorg. Med. Chem. Lett. 2016, 26 (3), 978-985.
https://doi.org/10.1016/j.bmcl.2015.12.049

[30]. Morjan, R. Y.; Mkadmh, A. M.; Beadham, I.; Elmanama, A. A.; Mattar, M. R.; Raftery, J.; Pritchard, R. G.; Awadallah, A. M.; Gardiner, J. M. Antibacterial Activities of Novel Nicotinic Acid Hydrazides and Their Conversion into N-Acetyl-1,3,4-Oxadiazoles. Bioorg. Med. Chem. Lett. 2014, 24 (24), 5796-5800.
https://doi.org/10.1016/j.bmcl.2014.10.029

[31]. Nfor, E. N.; Esemu, N. S.; Ayimele, A. G.; Eno, A. E.; Iniama, E. G.; Offiong, E. O. Synthesis, Stereochemistry and Antimicrobial Activity of Copper(II) and Nickel(II) Complexes of 4-Phenylsemicarbazones. Bull. Chem. Soc. Ethiop. 2011, 25 (3), 361-370.
https://doi.org/10.4314/bcse.v25i3.68668

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).