European Journal of Chemistry

Effective removal of arsenic (V) from aqueous solutions using efficient CuO/TiO2 nanocomposite adsorbent

Crossmark


Main Article Content

Saima Farooq
Asima Siddiqa
Sobia Ashraf
Sabtain Haider
Saiqa Imran
Shabnam Shahida
Sara Qaisar

Abstract

The groundwater is one of the biggest natural resources for providing drinking water to millions of people all around the globe. However, the presence of large amount of arsenic(V) in water causes serious health hazards to the consumers which necessitates the development of cost-effective remediation. The CuO/TiO2 nanocomposites were prepared by the precipitation-deposition method for the removal of the arsenate ion (AsO43-) from water. The prepared samples were characterized by powder X-ray diffraction, Fourier transform infrared, and scanning electron microscopy to examine crystallite size and structure, material purity, textural features, morphology, and surface area. The effect of different operating parameters such as pH, contact time, initial concentration of arsenic(V) and nanocomposite dose on the removal rate of arsenic(V) was examined to optimize the adsorption performance of the CuO/TiO2 nanocomposite. In addition, the adsorption mechanism was studied by employing Langmuir and Freundlich adsorption isotherms to gain better understanding of the adsorption mechanism. The Freundlich adsorption isotherm fits well with the experimental data and the maximum adsorption capacity of the Langmuir model was found to be 90 mg/g for arsenic(V). The CuO/TiO2 nanocomposite shows remarkable adsorption performance for the treatment of arsenic(V) contaminated water samples. This study provides a cost-effective solution for the safe use of groundwater contaminated with arsenic.


icon graph This Abstract was viewed 518 times | icon graph Article PDF downloaded 283 times

How to Cite
(1)
Farooq, S.; Siddiqa, A.; Ashraf, S.; Haider, S.; Imran, S.; Shahida, S.; Qaisar, S. Effective Removal of Arsenic (V) from Aqueous Solutions Using Efficient CuO TiO2 Nanocomposite Adsorbent. Eur. J. Chem. 2022, 13, 284-292.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Shaji, E.; Santosh, M.; Sarath, K. V.; Prakash, P.; Deepchand, V.; Divya, B. V. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. front. 2021, 12, 101079.
https://doi.org/10.1016/j.gsf.2020.08.015

[2]. Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Human biomarkers associated with low concentrations of arsenic (As) and lead (Pb) in groundwater in agricultural areas of Thailand. Sci. Rep. 2021, 11, 13896.
https://doi.org/10.1038/s41598-021-93337-y

[3]. Moreira, V. R.; Lebron, Y. A. R.; Santos, L. V. S.; Coutinho de Paula, E.; Amaral, M. C. S. Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Process Saf. Environ. Prot. 2021, 148, 604-623.
https://doi.org/10.1016/j.psep.2020.11.033

[4]. Fischer, A.; Lee, M.-K.; Ojeda, A. S.; Rogers, S. R. GIS interpolation is key in assessing spatial and temporal bioremediation of groundwater arsenic contamination. J. Environ. Manage. 2021, 280, 111683.
https://doi.org/10.1016/j.jenvman.2020.111683

[5]. Murcott, S. Arsenic Contamination in the World: An International Sourcebook 2012. Water Intell. Online 2012, 11.
https://doi.org/10.2166/9781780400396

[6]. Siddiq, O. M.; Tawabini, B. S.; Soupios, P.; Ntarlagiannis, D. Removal of arsenic from contaminated groundwater using biochar: a technical review. Int. J. Environ. Sci. Technol. (Tehran) 2022, 19, 651-664.
https://doi.org/10.1007/s13762-020-03116-x

[7]. Nicomel, N. R.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G. Technologies for arsenic removal from water: Current status and future perspectives. Int. J. Environ. Res. Public Health 2015, 13, 62.
https://doi.org/10.3390/ijerph13010062

[8]. Shishu, K. K.; Das Ambika, B. Depression, anxiety and stress among arsenic-induced cancer patients in Indo-Gangetic plains of Bihar: Role of proactive coping. Int. Q. Community Health Educ. 2021, 0272684X2110334.
https://doi.org/10.1177/0272684X211033460

[9]. Huang, H.-W.; Lee, C.-H.; Yu, H.-S. Arsenic-induced carcinogenesis and immune dysregulation. Int. J. Environ. Res. Public Health 2019, 16, 2746.
https://doi.org/10.3390/ijerph16152746

[10]. Shankar, S.; Shanker, U.; Shikha Arsenic contamination of ground water: a review of sources, prevalence, health risks, and strategies for mitigation. ScientificWorldJournal 2014, 2014, 304524.
https://doi.org/10.1155/2014/304524

[11]. Kong, L.; Wang, Y.; Andrews, C. B.; Zheng, C. One-step construction of hierarchical porous channels on electrospun MOF/polymer/graphene oxide composite nanofibers for effective arsenate removal from water. Chem. Eng. J. 2022, 435, 134830.
https://doi.org/10.1016/j.cej.2022.134830

[12]. Sorlini, S.; Gialdini, F. Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine. Water Res. 2010, 44, 5653-5659.
https://doi.org/10.1016/j.watres.2010.06.032

[13]. Linh, H. X.; Oanh, P. T.; Huy, N. N.; Van Hao, P.; Ngoc Minh, P.; Hong, P. N.; Van Thanh, D. Electrochemical mass production of graphene nanosheets for arsenic removal from aqueous solutions. Mater. Lett. 2019, 250, 16-19.
https://doi.org/10.1016/j.matlet.2019.04.115

[14]. Litter, M. I.; Morgada, M. E.; Bundschuh, J. Possible treatments for arsenic removal in Latin American waters for human consumption. Environ. Pollut. 2010, 158, 1105-1118.
https://doi.org/10.1016/j.envpol.2010.01.028

[15]. Sun, Y.; Yu, I. K. M.; Tsang, D. C. W.; Cao, X.; Lin, D.; Wang, L.; Graham, N. J. D.; Alessi, D. S.; Komárek, M.; Ok, Y. S.; Feng, Y.; Li, X.-D. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environ. Int. 2019, 124, 521-532.
https://doi.org/10.1016/j.envint.2019.01.047

[16]. Asere, T. G.; Stevens, C. V.; Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 2019, 676, 706-720.
https://doi.org/10.1016/j.scitotenv.2019.04.237

[17]. Yeo, K. F. H.; Li, C.; Zhang, H.; Chen, J.; Wang, W.; Dong, Y. Arsenic removal from contaminated water using natural adsorbents: A review. Coatings 2021, 11, 1407.
https://doi.org/10.3390/coatings11111407

[18]. Lingamdinne, L. P.; Lee, S.; Choi, J.-S.; Lebaka, V. R.; Durbaka, V. R. P.; Koduru, J. R. Potential of the magnetic hollow sphere nanocomposite (graphene oxide-gadolinium oxide) for arsenic removal from real field water and antimicrobial applications. J. Hazard. Mater. 2021, 402, 123882.
https://doi.org/10.1016/j.jhazmat.2020.123882

[19]. Guan, X.; Du, J.; Meng, X.; Sun, Y.; Sun, B.; Hu, Q. Application of titanium dioxide in arsenic removal from water: A review. J. Hazard. Mater. 2012, 215-216, 1-16.
https://doi.org/10.1016/j.jhazmat.2012.02.069

[20]. Feng, C.; Aldrich, C.; Eksteen, J. J.; Arrigan, D. W. M. Removal of arsenic from alkaline process waters of gold cyanidation by use of Fe3O4@SiO2@TiO2 nanosorbents. Miner. Eng. 2017, 110, 40-46.
https://doi.org/10.1016/j.mineng.2017.04.007

[21]. Sagharloo, N. G.; Rabani, M.; Salimi, L.; Ghafourian, H.; Sadatipour, S. M. T. Immobilized ZnO/TiO2 activated carbon (I ZnO/TiO2 AC) to removal of arsenic from aqueous environments: optimization using response surface methodology and kinetic studies. Biomass Convers. Biorefin. 2021, 10.1007/s13399-021-01741-1.
https://doi.org/10.1007/s13399-021-01741-1

[22]. Malwal, D.; Gopinath, P. Rapid and efficient removal of arsenic from water using electrospun CuO-ZnO composite nanofibers. RSC Adv. 2016, 6, 115021-115028.
https://doi.org/10.1039/C6RA24023B

[23]. Sharma, M.; Poddar, M.; Gupta, Y.; Nigam, S.; Avasthi, D. K.; Adelung, R.; Abolhassani, R.; Fiutowski, J.; Joshi, M.; Mishra, Y. K. Solar light assisted degradation of dyes and adsorption of heavy metal ions from water by CuO-ZnO tetrapodal hybrid nanocomposite. Mater. Today Chem. 2020, 17, 100336.
https://doi.org/10.1016/j.mtchem.2020.100336

[24]. Bhattacharya, P.; Mukherjee, D.; Dey, S.; Ghosh, S.; Banerjee, S. Development and performance evaluation of a novel CuO/TiO2 ceramic ultrafiltration membrane for ciprofloxacin removal. Mater. Chem. Phys. 2019, 229, 106-116.
https://doi.org/10.1016/j.matchemphys.2019.02.094

[25]. Xiaoyuan, J.; Guanghui, D.; Liping, L.; Yingxu, C.; Xiaoming, Z. Catalytic activities of CuO/TiO2 and CuO-ZrO2/TiO2 in NO + CO reaction. J. Mol. Catal. A Chem. 2004, 218, 187-195.
https://doi.org/10.1016/j.molcata.2004.02.020

[26]. Mahimairaja, S.; Bolan, N. S.; Adriano, D. C.; Robinson, B. Arsenic contamination and its risk management in complex environmental settings. In Advances in Agronomy; Elsevier, 2005; pp. 1-82.
https://doi.org/10.1016/S0065-2113(05)86001-8

[27]. Thotagamuge, R.; Kooh, M. R. R.; Mahadi, A. H.; Lim, C. M.; Abu, M.; Jan, A.; Hanipah, A. H. A.; Khiong, Y. Y.; Shofry, A. Copper modified activated bamboo charcoal to enhance adsorption of heavy metals from industrial wastewater. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100562.
https://doi.org/10.1016/j.enmm.2021.100562

[28]. Neag, E.; Malschi, D.; Măicăneanu, A. Isotherm and kinetic modelling of Toluidine Blue (TB) removal from aqueous solution using Lemna minor. Int. J. Phytoremediation 2018, 20, 1049-1054.
https://doi.org/10.1080/15226514.2018.1460304

[29]. Farooq, S.; Al Maani, A. H.; Naureen, Z.; Hussain, J.; Siddiqa, A.; Al Harrasi, A. Synthesis and characterization of copper oxide-loaded activated carbon nanocomposite: Adsorption of methylene blue, kinetic, isotherm, and thermodynamic study. J. Water Proc.engineering 2022, 47, 102692.
https://doi.org/10.1016/j.jwpe.2022.102692

[30]. Siddiqa, A.; Masih, D.; Anjum, D.; Siddiq, M. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol. J. Environ. Sci. (China) 2015, 37, 100-109.
https://doi.org/10.1016/j.jes.2015.04.024

[31]. Ilkhechi, N. N.; Koozegar-Kaleji, B.; Dousi, F. Optical and structural properties of tenorite nanopowders doped by Si and Zr. Opt. Quantum Electron. 2015, 47, 633-642.
https://doi.org/10.1007/s11082-014-9940-0

[32]. Kolaei, M.; Tayebi, M.; Lee, B.-K. The synergistic effects of acid treatment and silver (Ag) loading for substantial improvement of photoelectrochemical and photocatalytic activity of Na2Ti3O7/TiO2 nanocomposite. Appl. Surf. Sci. 2021, 540, 148359.
https://doi.org/10.1016/j.apsusc.2020.148359

[33]. Bibi, S.; Ahmad, A.; Anjum, M. A. R.; Haleem, A.; Siddiq, M.; Shah, S. S.; Kahtani, A. A. Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rGO) based metal oxides (rGO-Fe3O4/TiO2) nanocomposite under UV-visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105580.
https://doi.org/10.1016/j.jece.2021.105580

[34]. Bouazizi, N.; Bargougui, R.; Oueslati, A.; Benslama, R. Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv. Mater. Lett. 2015, 6, 158-164.
https://doi.org/10.5185/amlett.2015.5656

[35]. Shi, X. Z.; Gu, Y.; Liu, T. Y.; Jiang, Z. H.; Li, R.; Zeng, F. Effect of different P2O5/SnF2 ratios on the structure and properties of phosphate glass. J. Non Cryst. Solids 2022, 578, 121350.
https://doi.org/10.1016/j.jnoncrysol.2021.121350

[36]. Nekooie, R.; Shamspur, T.; Mostafavi, A. Novel CuO/TiO2/PANI nanocomposite: Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. J. Photochem. Photobiol. A Chem. 2021, 407, 113038.
https://doi.org/10.1016/j.jphotochem.2020.113038

[37]. Dulta, K.; Koşarsoy Ağçeli, G.; Chauhan, P.; Jasrotia, R.; Chauhan, P. K.; Ighalo, J. O. Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain. Environ. Res. 2022, 32.
https://doi.org/10.1186/s42834-021-00111-w

[38]. Lu, D.; Zelekew, O. A.; Abay, A. K.; Huang, Q.; Chen, X.; Zheng, Y. Synthesis and photocatalytic activities of a CuO/TiO2 composite catalyst using aquatic plants with accumulated copper as a template. RSC Adv. 2019, 9, 2018-2025.
https://doi.org/10.1039/C8RA09645G

[39]. Wei, Z.; Liang, K.; Wu, Y.; Zou, Y.; Zuo, J.; Arriagada, D. C.; Pan, Z.; Hu, G. The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO 2 anatase [1 0 1] surface. J. Colloid Interface Sci. 2016, 462, 252-259.
https://doi.org/10.1016/j.jcis.2015.10.018

[40]. Tao, L.; Huang, M.; Li, H.; Chen, W.; Su, Z.; Guan, Y. Cadmium and arsenic interactions under different molar ratios during coadsorption processes by excluding pH interference. Chemosphere 2022, 291, 132839.
https://doi.org/10.1016/j.chemosphere.2021.132839

[41]. Yeo, K. F. H.; Li, C.; Dong, Y.; Yang, Y.; Wu, K.; Zhang, H.; Chen, Z.; Gao, Y.; Wang, W. Adsorption performance of Fe(III) modified kapok fiber for As(V) removal from water. Sep. Purif. Technol. 2022, 287, 120494.
https://doi.org/10.1016/j.seppur.2022.120494

[42]. Sajjadi, S.-A.; Meknati, A.; Lima, E. C.; Dotto, G. L.; Mendoza-Castillo, D. I.; Anastopoulos, I.; Alakhras, F.; Unuabonah, E. I.; Singh, P.; Hosseini-Bandegharaei, A. A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J. Environ. Manage. 2019, 236, 34-44.
https://doi.org/10.1016/j.jenvman.2019.01.087

[43]. Naushad, M.; Alqadami, A. A.; AlOthman, Z. A.; Alsohaimi, I. H.; Algamdi, M. S.; Aldawsari, A. M. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J. Mol. Liq. 2019, 293, 111442.
https://doi.org/10.1016/j.molliq.2019.111442

[44]. Sharma, A.; Lee, B.-K. Growth of TiO 2 nano-wall on activated carbon fibers for enhancing the photocatalytic oxidation of benzene in aqueous phase. Catal. Today 2017, 287, 113-121.
https://doi.org/10.1016/j.cattod.2016.11.019

[45]. Urbano, B. F.; Villenas, I.; Rivas, B. L.; Campos, C. H. Cationic polymer-TiO2 nanocomposite sorbent for arsenate removal. Chem. Eng. J. 2015, 268, 362-370.
https://doi.org/10.1016/j.cej.2015.01.068

[46]. Seema, K. M.; Mamba, B. B.; Njuguna, J.; Bakhtizin, R. Z.; Mishra, A. K. Removal of lead (II) from aqeouos waste using (CD-PCL-TiO2) bio-nanocomposites. Int. J. Biol. Macromol. 2018, 109, 136-142.
https://doi.org/10.1016/j.ijbiomac.2017.12.046

[47]. Zhan, H.; Jiang, Y.; Ma, Q. Determination of adsorption characteristics of metal oxide nanomaterials: Application as adsorbents. Anal. Lett. 2014, 47, 871-884.
https://doi.org/10.1080/00032719.2013.850090

[48]. Saif, S.; Adil, S. F.; Khan, M.; Hatshan, M. R.; Khan, M.; Bashir, F. Adsorption studies of arsenic(V) by CuO nanoparticles synthesized by Phyllanthus emblica leaf-extract-fueled solution combustion synthesis. Sustainability 2021, 13, 2017.
https://doi.org/10.3390/su13042017

[49]. Viswan, A.; Gangadharan, D. Adsorptive remediation of organic pollutant and arsenic (V) ions from water using Fe3O4-MnO2 nanocomposite. Nano-struct. nano-objects 2022, 29, 100837.
https://doi.org/10.1016/j.nanoso.2022.100837

[50]. Yu, L.; Peng, X.; Ni, F.; Li, J.; Wang, D.; Luan, Z. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J. Hazard. Mater. 2013, 246-247, 10-17.
https://doi.org/10.1016/j.jhazmat.2012.12.007

[51]. Wu, K.; Jing, C.; Zhang, J.; Liu, T.; Yang, S.; Wang, W. Magnetic Fe3O4@CuO nanocomposite assembled on graphene oxide sheets for the enhanced removal of arsenic(III/V) from water. Appl. Surf. Sci. 2019, 466, 746-756.
https://doi.org/10.1016/j.apsusc.2018.10.091

[52]. Thy, L. T. M.; Thuong, N. H.; Tu, T. H.; My, N. H. T.; Tuong, H. H. P.; Nam, H. M.; Phong, M. T.; Hieu, N. H. Fabrication and adsorption properties of magnetic graphene oxide nanocomposites for removal of arsenic (V) from water. Adsorp. Sci. Technol. 2020, 38, 240-253.
https://doi.org/10.1177/0263617420942710

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).