European Journal of Chemistry 2015, 6(1), 48-56. doi:10.5155/eurjchem.6.1.48-56.1143

Characteristics of uranium recovery from phosphoric acid by an aminophosphonic resin and application to wet process phosphoric acid


Mohamed Farid Cheira (1,*)

(1) Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt
(*) Corresponding Author

Received: 02 Sep 2014, Accepted: 29 Sep 2014, Published: 31 Mar 2015

Abstract


The chelating aminomethylphosphonic resin Amberlite IRC747 is used for uranium recovery from a synthetic phosphoric acid solution. The operating conditions of uranium extraction have been experimentally optimized by the batch technique viz., the phosphoric acid concentration, the contact time, the initial uranium concentration and the temperature. The effect of some interfering ions upon the effective capacity of the resin has also been examined. It has thus been found that the maximum uranium adsorption capacity of the studied chelating resin was found to attain 86.5 mg/g at 5 M phosphoric acid using 0.1 g resin for 120 min contact time with 50 mL acid assaying 200 mg U/L and room temperature. The obtained equilibrium data agreed well with the Langmuir isotherm model and the relevant thermodynamic parameters (ΔG, ΔH and ΔS) were evaluated and the uranium adsorption was found to be an endothermic reaction and of spontaneous nature. From the kinetic experiments it was shown that U(VI) adsorption followed the pseudo-second order kinetics model and the intraparticle diffusion model. Also, it has been possible to reveal from the kinetic and isotherm data the chemisorption nature of uranium on the Amberlite IRC747 resin. The adsorbed uranium ions can almost be completely eluted with 0.8 M (NH4)2CO3 solution from the loaded resin at room temperature. The studied optimized conditions have successfully been applied for uranium recovery from Abu Zaabal wet process phosphoric acid (WPPA).


Keywords


Adsorption; Phosphoric acid; Uranium recovery; Amberlite IRC747 resin; Kinetics characterizations; Sorption thermodynamics

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.6.1.48-56.1143

Article Metrics


This Abstract was viewed 662 times | PDF Article downloaded 418 times

Citations

/


[1]. El Sayed A. Haggag, Ahmed A. Abdelsamad, Ahmed M. Masoud
Potentiality of uranium extraction from acidic leach liquor by polyacrylamide-acrylic acid titanium silicate composite adsorbent
International Journal of Environmental Analytical Chemistry  , 1, 2019
DOI: 10.1080/03067319.2019.1636037
/


[2]. Mohamed F. Cheira, Bahig M. Atia, Mohamed N. Kouraim
Uranium(VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: Kinetic, equilibrium and thermodynamic studies
Journal of Radiation Research and Applied Sciences  10(4), 307, 2017
DOI: 10.1016/j.jrras.2017.07.005
/


[3]. Ghada Hussein, Salwa Swafy, Ossama Ebian
Adsorption of uranium from sulfate leach liquor using rice straw impregnated with chlorophenyl hydrazinyl pyrazoloquinazolinon
Separation Science and Technology  54(11), 1764, 2019
DOI: 10.1080/01496395.2018.1539103
/


[4]. Xavier Hérès, Vincent Blet, Patricia Di Natale, Abla Ouaattou, Hamid Mazouz, Driss Dhiba, Frederic Cuer
Selective Extraction of Rare Earth Elements from Phosphoric Acid by Ion Exchange Resins
Metals  8(9), 682, 2018
DOI: 10.3390/met8090682
/


References

[1]. Zidan, I. H. J. Al Mansoura Environ. Sci. 2012, 41, 153-164.

[2]. European Fertilizer Manufacturers Association experts drawn from member companies, Production of phosphoric acid, Booklet No. 4 of 8, B-1160 Brussels, Belgium, 2000.

[3]. Weterings, K.; Janssen, J. Hydrometallurgy 1985, 15(2), 173-190.
http://dx.doi.org/10.1016/0304-386X(85)90052-0

[4]. Singh, S. K.; Misra, S. K.; Sudersanan, M.; Dakshinamoorthy, A.; Munshi, S. K.; Dey, P. K. Hydrometallurgy 2007, 87(3-4), 190-196.
http://dx.doi.org/10.1016/j.hydromet.2007.03.004

[5]. El-Hazek, N. T.; El Sayed, M. S. J. Radioanal. Nucl. Chem. 2003, 257(2), 347-352.
http://dx.doi.org/10.1023/A:1024740030940

[6]. Joshi, J. M.; Pathak, P. N.; Pandey, A. K.; Manchanda, V. K. Hydrometallurgy 2009, 96(1), 117-122.
http://dx.doi.org/10.1016/j.hydromet.2008.08.011

[7]. Singh, S. K.; Misra, S. K.; Tripathi, S. C.; Singh, D. K. Desalination 2010, 250(1), 19-25.
http://dx.doi.org/10.1016/j.desal.2009.06.067

[8]. Saidia, M.; Khalaf, H. Hydrometallurgy 2004, 74(1-2), 85-91.
http://dx.doi.org/10.1016/j.hydromet.2004.01.002

[9]. Kherfan, S.; Shadood, G.; Koudsi, Y. Per. Pol. Chem. Eng. 2011, 55(1), 27-30.
http://dx.doi.org/10.3311/pp.ch.2011-1.05

[10]. Schneider, B. The recovery of uranium from phosphoric acid. International Atomic Energy Agency, Vienna, Austria, IAEA-TECDOC-533, 45, 1989.

[11]. El-Nadi, Y. A.; Daoud, J. A. J. Nucl. Radiochem. Sci. 2004, 5(1), 11-15.
http://dx.doi.org/10.14494/jnrs2000.5.11

[12]. Rawajfeh, K. M.; Al-Matar, A. K. Hydrometallurgy 2000, 56(3), 309-322.
http://dx.doi.org/10.1016/S0304-386X(00)00080-3

[13]. Bunus, F. T.; Domocos, V. C.; Dumitrescu, P. J. Inorg. Nucl. Chem. 1978, 40(1), 117-121.
http://dx.doi.org/10.1016/0022-1902(78)80318-2

[14]. Krea, M.; Khalaf, H. Hydrometallurgy 2000, 58(3), 215-225.
http://dx.doi.org/10.1016/S0304-386X(00)00129-8

[15]. Guirguis, L. A.; Elrakaiby, R. M.; Filaila, N. I. J. Bas. Appl. Sci. Res. 2013, 3, 64-70.

[16]. Singh, H.; Vijayalakshmi, R.; Mishra, S. L.; Gupta, C. K. Hydrometallurgy 2001, 59(1), 69-76.
http://dx.doi.org/10.1016/S0304-386X(00)00145-6

[17]. Beltrami, D.; Cote, G.; Mokhtari, H.; Courtaud, B.; Chagnes, A. Hydrometallurgy 2012, 129-130, 118-125.
http://dx.doi.org/10.1016/j.hydromet.2012.09.005

[18]. Singh, S. K.; Dhami, PS.; Tripathi, S. C.; Dakshinamoorthy, A. Hydrometallurgy 2009, 95(1), 170-174.
http://dx.doi.org/10.1016/j.hydromet.2008.04.006

[19]. Beltrami, D.; Chagnes, A.; Haddad, M.; Varnek, A.; Mokhtari, H.; Courtaud, B.; Cote, G. Hydrometallurgy 2013, 140, 28-33.
http://dx.doi.org/10.1016/j.hydromet.2013.08.008

[20]. Beltrami, D.; Chagnes, A.; Haddad, M.; Laureano, H.; Mokhtari, H.; Courtaud, B.; Juge, S.; Cote, G. Hydrometallurgy 2014, 144-145, 207-214.
http://dx.doi.org/10.1016/j.hydromet.2014.02.010

[21]. Gadgil, O. D.; Dalvi, V. H.; Shenoy, K. T.; Rao, H.; Ghosh, S. K.; Joshi, J. B. Chem. Eng. Sci. 2014, 110, 169-184.
http://dx.doi.org/10.1016/j.ces.2013.10.020

[22]. Singh, H.; Mishra, S. L.; Vijayalakshmi, R. Hydrometallurgy 2004, 73(1-2), 63-70.
http://dx.doi.org/10.1016/j.hydromet.2003.08.006

[23]. Nazari, K.; Maragheh, M. G.; Rad, A. J. Hydrometallurgy 2004, 71(3-4), 371-377.
http://dx.doi.org/10.1016/S0304-386X(03)00088-4

[24]. Singh, S. K.; Tripathi, S. C.; Singh, D. K. Sep. Sci. Tech. 2010, 45(6), 824-831.
http://dx.doi.org/10.1080/01496391003607498

[25]. Morsy, A. M. A.; Hussein, A. E. M. J. Radioanal. Nucl. Chem. 2011, 288(2), 341-346.
http://dx.doi.org/10.1007/s10967-011-0980-7

[26]. Aly, M. M.; Mousa, M. A.; Taha, M. H.; Kandil, K. M.; El-Zoghby, A. A. Arab. J. Nucl. Sci. Appl. 2013, 46(5), 29-37.

[27]. Kadous, A.; Didi, M. A.; Villemin, D. J. Radioanal. Nucl. Chem. 2010, 284(2), 431-438.
http://dx.doi.org/10.1007/s10967-010-0495-7

[28]. Ahmadi, S. J.; Noori-Kalkhoran, O.; Shirvani-Arani, S. J. Hazard. Mater. 2010, 175(1-3), 193-197.
http://dx.doi.org/10.1016/j.jhazmat.2009.09.148

[29]. Abderrahim, O.; Didi, M. A.; Villemin, D. J. Radioanal. Nucl. Chem. 2009, 279(1), 237-244.
http://dx.doi.org/10.1007/s10967-007-7270-z

[30]. Ansari, S. A.; Mohapatra, P. K.; Manchanda, V. K. J. Hazard. Mater. 2009, 161(2-3), 1323-1329.
http://dx.doi.org/10.1016/j.jhazmat.2008.04.093

[31]. Gonzalez-Luque, S.; Streat, M. Hydrometallurgy 1983, 11(2), 207-225.
http://dx.doi.org/10.1016/0304-386X(83)90042-7

[32]. Volkman, Y. The recovery of uranium from phosphoric acid. IAEA, TECDOC-533, Vienna, 59, 1989.

[33]. Ketzinel, Z.; Volkman, Y.; Hassid, M. Advances in uranium ore processing and recovery from non-conventional resources. (IAEA-TC-491/12), STI/PUB/689, 215, 1985.

[34]. Kadous, A.; Didi, M. A.; Villemin, D. J. Radioanal. Nucl. Chem. 2011, 288(2), 553-561.
http://dx.doi.org/10.1007/s10967-010-0970-1

[35]. Kabay, N.; Demircioglu, M.; Yaylı, S.; Gunay, E.; Yuksel, M.; Saglam, M.; Streat, M. Ind. Eng. Chem. Res. 1998, 37(5), 1983-1990.
http://dx.doi.org/10.1021/ie970518k

[36]. Dutta, S.; Mohapatra, P. K.; Dhekane, G. D.; Das, A. K.; Manchanda, V. K. Desalination 2008, 232(1-3), 216-224.
http://dx.doi.org/10.1016/j.desal.2007.10.038

[37]. Rezkallah, A.; Lezennes. Patent Application Publication 2012, US 2012/0125158 A1.

[38]. Ferraro, J. Dow process for uranium recovery from phosphoric acid. IAEA Vienna, 2009.

[39]. Demircioglu, M.; Galan, B.; Gizli, N.; Kabay, N.; Ortiz, I.; Saglam, M.; Urtiaga, A. M.; Yuksel, M. CIHEAM (Options Méditerranéennes : Série A. Séminaires Méditerranéens) 2002, 53, 89-98.

[40]. Marczenko, Z.; Balcerzak, M. Separation, Preconcentration and Spectrophotometry in Inorganic Analysis. Elsevier Science BV, Amsterdam the Netherlands, 2000, pp. 446-455.
http://dx.doi.org/10.1016/S0926-4345(00)80118-2

[41]. Mathew, K. J.; Mason, B.; Morales, M. E.; Narayann, U. I. J. Radioanal. Nucl. Chem. 2009, 282(3), 939-944.
http://dx.doi.org/10.1007/s10967-009-0186-4

[42]. Langmuir, I. J. Am. Chem. Soc. 1918, 40, 1361-1403.
http://dx.doi.org/10.1021/ja02242a004

[43]. Freundlich, H. Phys. Chem. Soc. 1906, 40, 1361-1368.

[44]. Metwally, E. J. Radioanal. Nucl. Chem. 2006, 270(3), 559-566.
http://dx.doi.org/10.1007/s10967-006-0462-5

[45]. Lagergren, S. Kungliga svenska vertenskapsakademiens, Hand linger 1898, 24, 1-39.

[46]. Wang, G.; Liu, J.; Wang, X.; Chai, X.; Deng, N. App. Clay Sci. 2010, 47(3-4), 448-451.
http://dx.doi.org/10.1016/j.clay.2009.11.003

[47]. Ho, Y. S.; McKay, G. Process. Biochem. 1999, 34, 451-465.
http://dx.doi.org/10.1016/S0032-9592(98)00112-5

[48]. Guibal, E.; Milot, C.; Tobin, J. M. Ind. Eng. Chem. Res. 1998, 37(4), 1454-1463.

[49]. Atia, A. A. Appl. Clay Sci. 2008, 41(1-2), 73-84.
http://dx.doi.org/10.1016/j.clay.2007.09.011

[50]. Weber, W. J.; Morris, J. C. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89(2), 31-60.

[51]. Rahmati, A.; Ghaemi, A.; Samadfam, M. Ann. Nucl. Energy 2012, 39, 42-48.
http://dx.doi.org/10.1016/j.anucene.2011.09.006


How to cite


Cheira, M. Eur. J. Chem. 2015, 6(1), 48-56. doi:10.5155/eurjchem.6.1.48-56.1143
Cheira, M. Characteristics of uranium recovery from phosphoric acid by an aminophosphonic resin and application to wet process phosphoric acid. Eur. J. Chem. 2015, 6(1), 48-56. doi:10.5155/eurjchem.6.1.48-56.1143
Cheira, M. (2015). Characteristics of uranium recovery from phosphoric acid by an aminophosphonic resin and application to wet process phosphoric acid. European Journal of Chemistry, 6(1), 48-56. doi:10.5155/eurjchem.6.1.48-56.1143
Cheira, Mohamed. "Characteristics of uranium recovery from phosphoric acid by an aminophosphonic resin and application to wet process phosphoric acid." European Journal of Chemistry [Online], 6.1 (2015): 48-56. Web. 20 Aug. 2019
Cheira, Mohamed. "Characteristics of uranium recovery from phosphoric acid by an aminophosphonic resin and application to wet process phosphoric acid" European Journal of Chemistry [Online], Volume 6 Number 1 (31 March 2015)

DOI Link: https://doi.org/10.5155/eurjchem.6.1.48-56.1143

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.