European Journal of Chemistry 2011, 2(1), 8-13 | doi: https://doi.org/10.5155/eurjchem.2.1.8-13.134 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Study on the annealing-dependent photoluminescence properties of SnO2 cluster-system structures


Yunqing Zhu (1) , Yiqing Chen (2,*) , Xinhua Zhang (3)

(1) School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, CN-230009, China
(2) School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, CN-230009, China
(3) School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, CN-230009, China
(*) Corresponding Author

Received: 30 May 2010 | Accepted: 11 Oct 2010 | Published: 28 Mar 2011 | Issue Date: March 2011

Abstract


SnO2 cluster-system structures were synthesized via a two-step temperature-rising thermal evaporation method with short oxidation time. Field emission scanning electron microscopy, X-ray diffraction and transmission electron microscopy were used to characterize the morphological and structural feature of the product as nanowire cluster and nanoparticle cluster. The photoluminescence spectra exhibit that, as annealing time in air increases, the intensity of the newly found strong ultra-violet emission decreases while the green emission is increased. Raman spectrum and X-ray photoelectron spectroscopy investigations reveal that the relatively decreasing intensity was dominated by the increasing oxygen vacancy. Further calculation based on the SnO2 crystal lattices with H2O molecules at different steps in evaporation process was performed. The result of this calculation confirms that, rather than the influence of H2O molecules from air, the decreasing intensity is the result of the combined action of the formation of oxygen vacancy and the energetic oxygen compensation in annealing treatment.

2_1_8_13_800


Keywords


SnO2 cluster-system; Thermal evaporation; Photoluminescence; Oxygen vacancy; Bound H2O molecule; Energy minimization computation

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.2.1.8-13.134

Links for Article


| | | | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 1348 times | PDF Article downloaded 211 times

Funding information


This work was financially supported by the National Natural Science Foundation of China (NSFC, No.20671027).

Citations

/


[1]. Taekyung Lim, Hwansoo Kim, M. Meyyappan, Sanghyun Ju
Photostable Zn2SnO4 Nanowire Transistors for Transparent Displays
ACS Nano  6(6), 4912, 2012
DOI: 10.1021/nn300401w
/


[2]. Saurabh Tiwari, Nasima Khatun, N. Patra, A.K. Yadav, Dibyendu Bhattacharya, S.N. Jha, C.M. Tseng, S.W. Liu, Sajal Biring, Somaditya Sen
Role of oxygen vacancies in Co/Ni Substituted CeO2: A comparative study
Ceramics International  45(3), 3823, 2019
DOI: 10.1016/j.ceramint.2018.11.053
/


[3]. Saurabh Tiwari, Gyanendra Rathore, N. Patra, A.K. Yadav, Dibyendu Bhattacharya, S.N. Jha, C.M. Tseng, S.W. Liu, Sajal Biring, Somaditya Sen
Oxygen and cerium defects mediated changes in structural, optical and photoluminescence properties of Ni substituted CeO2
Journal of Alloys and Compounds  782, 689, 2019
DOI: 10.1016/j.jallcom.2018.12.009
/


[4]. SELMA M. H. AL-JAWAD, ABDULHUSSAIN K. ELTTAYF, AMEL S. SABER
STUDYING STRUCTURAL, OPTICAL, ELECTRICAL, AND SENSING PROPERTIES OF NANOCRYSTALLINE SnO2:Cu FILMS PREPARED BY SOL–GEL METHOD FOR CO GAS SENSOR APPLICATION AT LOW TEMPERATURE
Surface Review and Letters  24(08), 1750110, 2017
DOI: 10.1142/S0218625X17501104
/


[5]. Zhen-Kun He, Qiang Sun, Zhongning Shi, Kaiyu Xie, Ali Reza Kamali
Molten salt synthesis of oxygen-deficient SnO2 crystals with enhanced electrical conductivity
Applied Surface Science  465, 397, 2019
DOI: 10.1016/j.apsusc.2018.09.169
/


[6]. Ana-Maria Ungureanu, Ovidiu Oprea, Bogdan Vasile, Corina Andronescu, Georgeta Voicu, Ioana Jitaru
Temperature effect over structure and photochemical properties of nanostructured SnO2 powders
Open Chemistry  12(9), 909, 2014
DOI: 10.2478/s11532-013-0400-7
/


[7]. V. Ramasamy, G. Vijayalakshmi
Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles
Superlattices and Microstructures  85, 510, 2015
DOI: 10.1016/j.spmi.2015.05.015
/


References

[1]. Li, F.; Chen, L. Y.; Chen, Z. Q.; Xu, J. Q.; Zhu, J. M.; Xin, X. Q. Mater. Chem. Phys. 2002, 73, 335-338.
doi:10.1016/S0254-0584(01)00357-1

[2]. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Appl. Phys. Lett. 2002, 81, 1869-1871.
doi:10.1063/1.1504867

[3]. Kolmakov, A.; Zhang, Y. X.; Cheng, G. S.; Moskovits, M. Adv. Mater. 2003, 15, 997-1000.
doi:10.1002/adma.200304889

[4]. Arnold, M. S.; Avouris, P.; Pan, Z. W.; Wang, Z. L. J. Phys. Chem. B 2003, 107, 659-663.
doi:10.1021/jp0271054

[5]. Boyd, E. J.; Brown, S. A. Nanotechnology 2009, 20, 425201 (7 pp.).

[6]. Ferrere, S.; Zaban, A.; Gregg, B. A. J. Phys. Chem. B 1997, 101, 4490-4493.
doi:10.1021/jp970683d

[7]. Tatsuyama, C.; Ichimura, S. Jpn. J. Appl. Phys. 1976, 15, 843-847.
doi:10.1143/JJAP.15.843

[8]. Seo, H. W.; Han, C. S.; Hwang, S. O.; Park, J. Nanotechnology 2006, 17, 3388-3393.
doi:10.1088/0957-4484/17/14/008
PMid:19661580

[9]. Luo, S.; Fan, J.; Liu, W.; Zhang, M.; Song, Z.; Lin, C.; Wu, X.; Chu, P. Nanotechnology 2006, 17, 1695-1699.
doi:10.1088/0957-4484/17/6/025

[10]. Tang, Y.; Zhao, D. X.; Shen, D. Z.; Zhang, J. Y.; Wang, X. H. Nanotechnology 2009, 20, 495601 (6 pp.).

[11]. Kim, T. W.; Lee, D. U.; Yoon, Y. S. J. Appl. Phys. 2000, 88, 3759-3761.

[12]. Sun, S. H.; Meng, G. W.; Zhang, G. X.; Gao, T.; Geng, B. Y.; Zhang, L. D.; Zuo, J. Chem. Phys. Lett. 2003, 376, 103-107.
doi:10.1016/S0009-2614(03)00965-5

[13]. Gu, F.; Wang, S. F.; Song, C. F.; Lu, M. K.; Qi, Y. X.; Zhou, G. J.; Xu, D.; Yuan, D. R. Chem. Phys. Lett. 2003, 372, 451-454.
doi:10.1016/S0009-2614(03)00440-8

[14]. Prades, J. D. et al. Sensors and Actuators B 2007, 126, 6-12.
doi:10.1016/j.snb.2006.10.014

[15]. Kim, T.W. Mater. Res. Bull. 2001, 36, 349-353.
doi:10.1016/S0025-5408(01)00500-1

[16]. Maestre, D.; Cremades, A.; Piqueras, J. J. Appl. Phys. 2004, 95, 3027-3030.

[17]. Ma, J.; Wang, Y. H.; Ji, T. F.; Yu, X. H.; Ma, H. L. Mater. Lett. 2005, 59, 2142-2145.
doi:10.1016/j.matlet.2005.02.049

[18]. Gao, T.; Wang, T. H. Mater. Res. Bull. 2008, 43, 836-842.
doi:10.1016/j.materresbull.2007.05.004

[19]. Li, P. G.; Lei, M.; Tang, W. H.; Guo, X.; Wang, X. J. Alloy. Compd. 2009, 477, 515-518.
doi:10.1016/j.jallcom.2008.10.130

[20]. Mizokawa, Y.; Nakamura, S. Jpn. J. Appl. Phys. 1975, 14, 779-788.
doi:10.1143/JJAP.14.779

[21]. Zhou, J. X.; Zhang, M. S.; Hong, J. M.; Yin, Z. Solid State Commun. 2006, 138, 242-246.
doi:10.1016/j.ssc.2006.03.007

[22]. Wang, S. Solìd State Electronics, 1st edition, McGraw-Hill Book Co., 1966.

[23]. Jung, J.; Choi, S. P.; Chang, C. Solid State Commun. 2003, 127, 595-597.
doi:10.1016/S0038-1098(03)00614-8

[24]. Abello, L.; Bochu, B.; Gaskov, A.; Koudryavtseva, S.; Lucazeau, G.; Roumyantseva, M. J. Solid State Chem. 1998, 135, 78-85.
doi:10.1006/jssc.1997.7596

[25]. Zuo, J.; Xu, C.; Liu, X.; Wang, C.; Wang, C.; Hu, Y.; Qian, Y. J. Appl. Phys. 1994, 75, 1835-1836.

[26]. Diéguez, A.; Romano-Rodríguez, A.; Vilà, A.; Morante, J. R. J. Appl. Phys. 2001, 90, 1550-1557.

[27]. Liu, Y. K.; Zheng, C. L.; Wang, W. Z.; Yin, C. R.; Wang, G. H. Adv. Mater. 2001, 13, 1883-1887.
doi:10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-Q

[28]. Mcguire, K.; Pan, Z. W.; Wang, Z. L.; Milkie, D.; Menéndez, J.; Rao, A. M. J. Nanosci. Nanotech. 2002, 2, 499-502.
doi:10.1166/jnn.2002.129
PMid:12908287

[29]. Wang, J. X.; Lou, D. F.; Yan, X. Q.; Tuan, H. J.; Ci, L. J.; Zhou, Z. P.; Gao, Y.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Xie, S. S. Solid State Commun. 2004, 130, 89-94.
doi:10.1016/j.ssc.2004.01.003

[30]. Ye, J. D.; Gu, S. L.; Qin, F.; Zhu, S. M.; Liu, S. M.; Zhou, X.; Liu, W.; Hu, L. Q.; Zhang, R.; Shi, Y. Appl. Phys. A 2005, 81, 809-812.
doi:10.1007/s00339-004-2865-x

[31]. Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M. Phys. Status Solidi B 2004, 241, 616-619.
doi:10.1002/pssb.200304196

[32]. Coppa, B.; Davis, R. F.; Nemanich, R. J. Appl. Phys. Lett. 2003, 82, 400-402.
doi:10.1063/1.1536264

[33]. Li, S.; Zhang, X. Z.; Yan, B.; Yu, T. Nanotechnology 2009, 20, 495604 (9 pp.).

[34]. Cox, D. F.; Fryberger, T. B.; Semancik, S. Phys. Rev. B 1988, 38, 2072-2083.
doi:10.1103/PhysRevB.38.2072

[35]. Cox, D. F.; Fryberger, T. B.; Semancik, S. Surf. Sci. 1990, 227, L105-L108.
doi:10.1016/0039-6028(90)90380-Q

How to cite


Zhu, Y.; Chen, Y.; Zhang, X. Eur. J. Chem. 2011, 2(1), 8-13. doi:10.5155/eurjchem.2.1.8-13.134
Zhu, Y.; Chen, Y.; Zhang, X. Study on the annealing-dependent photoluminescence properties of SnO2 cluster-system structures. Eur. J. Chem. 2011, 2(1), 8-13. doi:10.5155/eurjchem.2.1.8-13.134
Zhu, Y., Chen, Y., & Zhang, X. (2011). Study on the annealing-dependent photoluminescence properties of SnO2 cluster-system structures. European Journal of Chemistry, 2(1), 8-13. doi:10.5155/eurjchem.2.1.8-13.134
Zhu, Yunqing, Yiqing Chen, & Xinhua Zhang. "Study on the annealing-dependent photoluminescence properties of SnO2 cluster-system structures." European Journal of Chemistry [Online], 2.1 (2011): 8-13. Web. 31 Oct. 2020
Zhu, Yunqing, Chen, Yiqing, AND Zhang, Xinhua. "Study on the annealing-dependent photoluminescence properties of SnO2 cluster-system structures" European Journal of Chemistry [Online], Volume 2 Number 1 (28 March 2011)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.2.1.8-13.134

| | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2011, 2(1), 8-13 | doi: https://doi.org/10.5155/eurjchem.2.1.8-13.134 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.