European Journal of Chemistry 2017, 8(4), 333-338. doi:10.5155/eurjchem.8.4.333-338.1613

Thermodynamic and kinetic studies on interaction of some transition metal ions with tryptophan


Ebrahim Ghiamati (1,*) , Zahra Abazari (2)

(1) Chemistry Department, University of Birjand, Birjand, 971-743-4765, Iran
(2) Chemistry Department, University of Birjand, Birjand, 971-743-4765, Iran
(*) Corresponding Author

Received: 12 Jul 2017, Accepted: 07 Oct 2017, Published: 31 Dec 2017

Abstract


Amino acid of tryptophan (Trp) was chosen as a drug. A systematic approach was made to study its interaction with some transition metal ions, and qualitatively and quantitatively examine the thermodynamic and kinetic phenomena on this model drug. To accomplish these tasks, the stability constants of Trp complexes with Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II) at temperatures of 25, 30, 35, and 40 °C were determined potentiometrically, utilizing modified Bjerrum’s method. Potentiometric titrations were carried out in water, and water:dioxane mixture (50:50, v:v). Our findings showed that the stability constants of the complexes increased as the dioxane content was raised or temperature was elevated. The negative values of ΔG° are indication of spontaneity of the processes. ΔH° values are positive, conveying the complex formation is an endothermic process and ΔS° values are positive contributing more to spontaneity, causing reaction favoring and disordering. The variations of natural logarithm of the stability constants versus 1/T are linear leading to evaluation of the stability constant of the complexes at any temperature. Moreover, kinetic study gave rise to estimation of rate constant and activation energy for each complex formation process. It was concluded that the order of increasing stability of the complexes is: kf Co(II)-Trp » kf Zn(II)-Trp < kf Pb(II)-Trp < kf Ni(II)-Trp < kf Cu(II)-Trp < kf Fe (III)- Trp. Furthermore the activation energy values for the aforementioned complexes in water-dioxane mixture obeyed the following trend Ea Zn(II)-trp < Ea Fe(III)-Trp < Ea Ni(II)-trp < Ea Co(II)-trp <Ea Cu(II)-trp <Ea Pb(II)-trp.


Keywords


Kinetics; Tryptophan; Stability constant; Thermodynamics; Metal ion-complex; Dioxane-water mixture

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.8.4.333-338.1613

Article Metrics


This Abstract was viewed 421 times | PDF Article downloaded 114 times

References

[1]. Ruan, C.; Rodgers, M. T. J. Am. Chem. Soc. 2004, 126, 14600-14610.
https://doi.org/10.1021/ja048297e

[2]. Bjerrum, J. Metal-ammine formation in aqueous solution, J. P. Haase and Son, Copenhagen, 1941.

[3]. Calvin, M.; Wilson, K. W. J. Am. Chem. Soc. 1945, 67, 2003-2007.
https://doi.org/10.1021/ja01227a043

[4]. Irving, H. M.; Rossotti, H. S. J. Chem. Soc. 1954, 2904-2910.
https://doi.org/10.1039/jr9540002904

[5]. Perkins, D. J. Biochem. J. 1953, 55, 649-652.
https://doi.org/10.1042/bj0550649

[6]. Rosenberg, B.; Sigel, H.; Marcel, D.; Marzilli, L. G. (Ed.) Metal Ions in Biological Systems. Wiley-Interscience, New York, 1980.

[7]. Beck, M. T.; Nagypal, I., Chemistry of Complex Equilibria. Chapter 1, Ellis Horwood, New York, 1990.

[8]. Smith, R. M.; Motekaitis, R. J.; Martell, A. E. Inorg. Chim. Acta 1985, 103, 73-82.
https://doi.org/10.1016/S0020-1693(00)85215-9

[9]. Sovago, I.; Kiss, T.; Gergely, A. Pure Appl. Chem. 1993, 65, 1029-1080.
https://doi.org/10.1351/pac199365051029

[10]. Shoukry, M. M.; Shehata, M. R.; Mohamed, M. M. A. Mikrochim. Acta 1998, 129, 107-113.
https://doi.org/10.1007/BF01246857

[11]. Martell, A. E.; Huncock, R. D. Metal complexes in aqueous solutions. Plenum Press, 1996.
https://doi.org/10.1007/978-1-4899-1486-6

[12]. Martell, A. E.; Motekaitis, R. J. The determination and use of stability constants. Wiley-VCH, 1992.

[13]. Silva, A. M.; Merce, A. L. R.; Mangrich, A. S.; Souto, C. A. T.; Felcman, J. Polyhedron 2006, 25, 1319-1326.
https://doi.org/10.1016/j.poly.2005.09.016

[14]. Pettit, L. D. Pure Appl. Chem. 1984, 56, 247-292.
https://doi.org/10.1351/pac198456020247

[15]. Taha, M.; Khalil, M. M. Chem. Eng. Data 2005, 50, 157-163.
https://doi.org/10.1021/je049766v

[16]. Demirelli, H.; Koseoglu, F. J. Solution Chem. 2005, 34, 561-577.
https://doi.org/10.1007/s10953-005-5592-9

[17]. Podsiadly, H.; Karwecka, Z. Polyhedron 2009, 28, 1568-1572.
https://doi.org/10.1016/j.poly.2009.03.015

[18]. Sajadi, S. A. A. Natural Sci. 2010, 2, 85-90.
https://doi.org/10.4236/ns.2010.22013

[19]. Rani, R. S.; Rao, G. N. Bull. Chem. Soc. Ethiop. 2013, 27, 367-376.

[20]. Turkel, N. Bioinorg. Chem. Appl. 2015, Article ID 374782, 1-9.

[21]. Mohamed, A. A.; Bakr, M. F.; Abd El-Fattah, K. A. Thermochim. Acta 1990, 405, 235-253.
https://doi.org/10.1016/S0040-6031(03)00197-7

[22]. Masoud, M. S.; Abdel-Nabby, B. A. Thermochim. Acta 1988, 128, 75-80.
https://doi.org/10.1016/0040-6031(88)85353-X

[23]. Casale, A.; De Robertis, A.; De Stefano, C.; Gianguzza, A.; Patane, G.; Riango, C. Thermochim. Acta 1995, 255, 109-141.
https://doi.org/10.1016/0040-6031(94)02181-M

[24]. Fazary, A. E.; Mohamed, A. F.; Lebedeva, N. S. J. Chem. Thermodyn. 2006, 38, 1467-1473.
https://doi.org/10.1016/j.jct.2006.01.003

[25]. Ghiamati, E.; Oliaei, S. SOJ Biochem. 2017, 3, 6-12.

[26]. Ghiamati, E.; Jalaeian, E. Asian J. Phys. Chem. Sci. 2017, 2, 1-10.

[27]. Ghiamati, E.; Baniasadi, M.; Farrokhi, A. Chem. Sci. Int. J. 2017, 19, 1-15.
https://doi.org/10.9734/CSJI/2017/34611

[28]. Ghiamati, E.; Lashkari, M.; Hasheminia, M. Asian J. Chem. 2013, 25, 1361-1365.

[29]. Chaudhari, U. E. Orient. J. Chem. 2011, 27, 297-300.

[30]. Chaudhari, U. E. Int. J. Chem. Sci. 2009, 7, 1746-1750.

[31]. Rathore, M. M.; Parhate, V. V.; Rajput, P. R. Res. J. Chem. Sci. 2013, 3, 77-79.

[32]. Mohamed, A. A.; El-Dossoki, F. I.; Gumaa, H. A. J. Chem. Eng. Data 2010, 55, 673-678.
https://doi.org/10.1021/je900358n

[33]. Sahadev; Sharma, R. K.; Sindhwani, S. K.; Monatsh. Fur Chemie Chem. Monthly 1992, 123, 1099-1105.
https://doi.org/10.1007/BF00808272

[34]. Dogan, A.; Aslan, N.; Canel, E.; Kilic, E. J. Solution Chem. 2010, 39, 1589-1596.
https://doi.org/10.1007/s10953-010-9612-z

[35]. Tang, X.; Liu, Y.; Hou, H.; You, T. Talanta 2010, 80, 2182-2186.
https://doi.org/10.1016/j.talanta.2009.11.027

[36]. Chalmers, R. A. Chemistry of Complex equilibria: Van Nostrand Reinhold Company, London, UK, 1970.

[37]. Azab, H. A.; El-Nady, A. M.; El-Shatoury, S. A.; Hassan, A. Talanta 1994, 41, 1255-1259.
https://doi.org/10.1016/0039-9140(93)E0056-J


How to cite


Ghiamati, E.; Abazari, Z. Eur. J. Chem. 2017, 8(4), 333-338. doi:10.5155/eurjchem.8.4.333-338.1613
Ghiamati, E.; Abazari, Z. Thermodynamic and kinetic studies on interaction of some transition metal ions with tryptophan. Eur. J. Chem. 2017, 8(4), 333-338. doi:10.5155/eurjchem.8.4.333-338.1613
Ghiamati, E., & Abazari, Z. (2017). Thermodynamic and kinetic studies on interaction of some transition metal ions with tryptophan. European Journal of Chemistry, 8(4), 333-338. doi:10.5155/eurjchem.8.4.333-338.1613
Ghiamati, Ebrahim, & Zahra Abazari. "Thermodynamic and kinetic studies on interaction of some transition metal ions with tryptophan." European Journal of Chemistry [Online], 8.4 (2017): 333-338. Web. 20 Aug. 2019
Ghiamati, Ebrahim, AND Abazari, Zahra. "Thermodynamic and kinetic studies on interaction of some transition metal ions with tryptophan" European Journal of Chemistry [Online], Volume 8 Number 4 (31 December 2017)

DOI Link: https://doi.org/10.5155/eurjchem.8.4.333-338.1613

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.