European Journal of Chemistry

Synthesis, characterization and thermal decomposition of ethyl-2’-amino-5’-cyano-6’-(1H-indole-3yl)-2-oxospiro[indoline-3,4’-pyran]-3’-carboxylate under non‐isothermal condition in nitrogen atmosphere

Crossmark


Main Article Content

Ganesan Nalini
Natesan Jayachandramani
Radhakrishnan Suresh
Prakasam Thirumurugan
Venugopal Thanikachalam
Govindasamy Manikandan
Dharmalingam Sankari

Abstract

A new compound, spiro-oxindole derivative compound namely ethyl-2ʹ-amino-5ʹ-cyano-6ʹ-(1H-indole-3yl)-2-oxospiro[indoline-3,4ʹ-pyran]-3ʹ-carboxylate (EACIOIPC) has been synthesized and characterized by microanalysis, FT-IR, mass spectrum and NMR (1H and 13C) techniques. The thermal decomposition of the compound was studied by thermogravimetric analysis under dynamic nitrogen atmosphere at different heating rates of 10, 15, 20 and 30 K/min. The kinetic parameters were calculated using model-free (Friedman’s, Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods) and model-fitting (Coats and Redfern (CR)) methods. The decomposition process of EACIOIPC followed a single step mechanism as evidenced from the data. Existence of compensation effect is noticed for the decomposition of EACIOIPC. Invariant kinetic parameters are consistent with the average values obtained by Friedman and KAS in conversional methods.


icon graph This Abstract was viewed 1263 times | icon graph Article PDF downloaded 536 times

How to Cite
(1)
Nalini, G.; Jayachandramani, N.; Suresh, R.; Thirumurugan, P.; Thanikachalam, V.; Manikandan, G.; Sankari, D. Synthesis, Characterization and Thermal Decomposition of Ethyl-2’-Amino-5’-Cyano-6’-(1H-Indole-3yl)-2-oxospiro[indoline-3,4’-Pyran]-3’-Carboxylate under non‐isothermal Condition in Nitrogen Atmosphere. Eur. J. Chem. 2019, 10, 72-81.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P. T. Eur. J. Med. Chem. 2012, 51, 79-91.
https://doi.org/10.1016/j.ejmech.2012.02.024

[2]. Gribble, G. W. J. Chem. Soc. Perkin Trans. I 2000, 1045-1075.
https://doi.org/10.1039/a909834h

[3]. Zhu, S. L.; Ji, S. L.; Su, X. M.; Sun, C.; Liu, Y. Tetrahedron Lett. 2008, 49, 1777-1781.
https://doi.org/10.1016/j.tetlet.2008.01.054

[4]. Farghaly, A. M.; Habib, N. S.; Khalil, M. A.; El-Sayed, O. A. Alexandria. J. Pharm. Sci. 1989, 3, 84-86.

[5]. Yu, B.; Yu, D. Q.; Liu, H. M. Eur. J. Med. Chem. 2015, 97, 673‐698.
https://doi.org/10.1016/j.ejmech.2014.06.056

[6]. Fuchao, Y.; Huang, R.; Hangchen, N.; Juan, F.; Shengjiao, Y.; Lin, L. Green. Chem. 2013, 15, 453-462.
https://doi.org/10.1039/C2GC36552A

[7]. Arun, Y.; Bhaskar, G.; Balachandran, C.; Ignacimuthu, S.; Perumal, P. T. Bioorg. Med. Chem. Lett. 2013, 23, 1839-1845.
https://doi.org/10.1016/j.bmcl.2013.01.023

[8]. Georgieva, V.; Zvezdova, D.; Vlaev, L. Chem. Cent. J. 2012, 6, 81, 1-10

[9]. Georgieva, V.; Zvezdova, D.; Vlaev, L. J. Therm. Anal. Calorim. 2013, 111, 763-771.
https://doi.org/10.1007/s10973-012-2359-6

[10]. Fulias, A.; Vlase, G.; Vlase, T.; Soica, C.; Heghes, A.; Craina, M.; Ledeti, I. Chem. Cent. J. 2013, 7, 70, 1-8.

[11]. Fulias, A.; Vlase, G.; Grigorie, C.; Ledeti, I.; Albu, P.; Bilanin, M.; Vlase, T. J. Therm. Anal. Calorim. 2013, 113, 265-271.
https://doi.org/10.1007/s10973-013-2959-9

[12]. Kamel, T. L. Eur. J. Chem. 2015, 6(2), 199-203.
https://doi.org/10.5155/eurjchem.6.2.199-203.1249

[13]. Nalini, G.; Jayachandramani, N.; Thanikachalam, V.; Jayabharathi, J.; Manikandan, G.; Suresh, R. Can. Chem. Trans. 2016, 4, 62-72.

[14]. Nalini, G.; Jayachandramani, N.; Suresh, R.; Thanikachalam, V.; Manikandan, G. Eur. J. Chem. 2016, 7(3), 380-386.
https://doi.org/10.5155/eurjchem.7.3.380-386.1442

[15]. Nalini, G.; Jayachandramani, N.; Suresh, R.; Thirumurugan, P.; Thanikachalam, V.; Manikandan, G. Int. J. Adv. Chem. Sci. App. 2016, 3(4), 25-38.

[16]. Alok, D.; Suraj, B. S.; Muammel, M. H.; Rekha, R. Environ. Clim. Technol. 2018, 22, 5-21.
https://doi.org/10.1515/rtuect-2018-0001

[17]. Venkatesh, M.; Ravi, P.; Surya, P. T. J. Phys. Chem. A 2013, 117, 10162-10169.
https://doi.org/10.1021/jp407526r

[18]. Ashis, B.; Amlan, R.; Debasis, R.; Madhusudan, R. J. Exp. Phys. 2014, Article ID: 513268.

[19]. Nandakumar, A.; Thirumurugan, P.; Perumal, P. T.; Vembu, P.; Ponnuswamy, N. M.; Ramesh, P. Bioorg. Med. Chem. Lett. 2010, 20, 4252-4258.
https://doi.org/10.1016/j.bmcl.2010.05.025

[20]. Coats, A. W.; Redfern, J. P. Nature (London) 1968, 201, 68-69.
https://doi.org/10.1038/201068a0

[21]. Wendlandt, W. W. Thermal Methods of Analysis, John Wiley and Sons Inc., New York, 1974.

[22]. Friedman, H. L. Polym. Sci. 1963, 6, 183-195.

[23]. Flynn, J. H.; Wall, L. A. J. Res. Natl. Bur. Stand. 1966, 70, 487-523.
https://doi.org/10.6028/jres.070A.043

[24]. Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881-1886.
https://doi.org/10.1246/bcsj.38.1881

[25]. Kissinger, H. E. Anal. Chem. 1957, 29, 1702-1706.
https://doi.org/10.1021/ac60131a045

[26]. Akahira, T.; Sunose, T. Res. Rep. CHIBA Inst. Technol. 1971, 16, 22-31.

[27]. Lesnikovich, A. I.; Levchik, S. V. J. Therm. Anal. 1985, 30, 237-262.
https://doi.org/10.1007/BF02128134

[28]. Lesnikovich, A. I.; Levchik, S. V. J. Therm. Anal. 1983, 27, 89-94.
https://doi.org/10.1007/BF01907324

[29]. Malek, J. A. Thermochim. Acta 1989, 136, 337-346.
https://doi.org/10.1016/0040-6031(89)87270-3

[30]. Malek, J. Thermochim. Acta 1992, 200, 257-269.
https://doi.org/10.1016/0040-6031(92)85118-F

[31]. Cordes, F. H. J. Phys. Chem. 1968, 72, 2185-2189.
https://doi.org/10.1021/j100852a052

[32]. Bamford, C. H.; Tipper, C. F. H. Comprehensive chemical kinetics, Reactions in the Solid State 1980, 22, 1-340.

[33]. Pratap, A.; Rao, T. L. S.; Dhaurandhar, H. D. J. Therm. Anal. Calorim. 2007, 89, 399-405.
https://doi.org/10.1007/s10973-006-8160-7

[34]. Criado, J. M.; Morales, J. Thermochim. Acta 1976, 16, 382-387
https://doi.org/10.1016/0040-6031(76)80031-7

[35]. Venkatesan, J.; Sekar, M.; Thanikachalam, V.; Manikandan, G. Chemical Data Collections, 2017, 9(10), 67-79.

[36]. Manikandan, G.; Rajarajan, G.; Jayabharathi, J.; Thanikachalam, V. Arab. J. Chem. 2011, 9, 570-575.
https://doi.org/10.1016/j.arabjc.2011.06.029

[37]. Ma, H. X.; Yan, B.; Li, Z. N.; Song, J. R.; Hu, R. Z. J. Therm. Anal. Calorim. 2007, 95, 437-444.
https://doi.org/10.1007/s10973-008-9255-0

[38]. Boonchom, B. J. Therm. Anal. Calorim. 2010, 31, 416-429.

[39]. Criado, J. M.; Perez-Maqueda, L. A.; Sanchez-Jimenez, P. E. J. Therm. Anal. Calorim. 2005, 82, 671-675.
https://doi.org/10.1007/s10973-005-0948-3

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).