European Journal of Chemistry 2019, 10(4), 317-322 | doi: https://doi.org/10.5155/eurjchem.10.4.317-322.1895 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Catalytic activity of nanosized Au/CeO2 catalyst towards H2O2 decomposition and the role of cationic/metallic ratio in its activity


Ayman Abd El-Moemen (1,*) orcid

(1) Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
(*) Corresponding Author

Received: 20 May 2019 | Revised: 12 Jul 2019 | Accepted: 13 Jul 2019 | Published: 31 Dec 2019 | Issue Date: December 2019

Abstract


The catalytic decomposition of H2O2 on differently pre-treated Au/CeO2 catalyst was studied by kinetic measurements at 20-50 °C. The prepared catalyst was subjected to pre-treatment by heating either in oxidative (10% O2/N2) or inert (pure N2)atmosphere at 400 °C. The different oxidation states of gold were determined by X-ray photoelectron spectroscopy measurements. The Au/CeO2 catalyst exhibited an excellent catalytic activity towards H2O2 decomposition. The catalytic activity of oxygen pre-treated sample was about twice higher than that measured for nitrogen pre-treated sample. This finding ran parallel to the amount of Aun+ as determined by XPS, indicating the role played by Aun+ species as the most active catalyst’s constituent. However, one cannot overlook the role of metallic gold in catalyzing the H2O2, decomposition showing small activity compared to that of cationic gold. The average crystallites size of metallic gold particles was found to be 7±0.5 nm independent of the pre-treatment conditions. The apparent activation energy of the catalyzed reaction was found to be 46.5 and 47.8 kJ/mol for oxygen and nitrogen pre-treatment, respectively.


Keywords


Au/CeO2 catalyst; Catalytic activity; H2O2 decomposition; Catalyst pre-treatment; X-ray diffraction (XRD); X-ray photoelectron spectroscopy (XPS)

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.10.4.317-322.1895

Links for Article


| | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 81 times | PDF Article downloaded 28 times

Funding information


Institute of Surface Chemistry and Catalysis, Ulm University, Germany.

References

[1]. Lousada, C. M.; Jonsson, M. J. Phys. Chem. 2010, 114, 11202- 11208.
https://doi.org/10.1021/jp1028933

[2]. Lousada, C. M.; Johansson, A. J.; Brinck, T.; Jonsson, M. J. Phys. Chem. C. 2012, 116, 9533-9543
https://doi.org/10.1021/jp300255h

[3]. Naya, S.; Teranishi, M.; Kimura, K.; Tada, H. Chem. Commun. , 2011, 47, 3230-3232.
https://doi.org/10.1039/c0cc03047c

[4]. El-Shobaky, G. A.; Radwan, F. M.; Turky, A. M.; Abd El-Moemen, A. Adsorp. Sci. Technol. 2000, 18, 799-811.
https://doi.org/10.1260/0263617001493828

[5]. El-Shobaky, G. A.; Radwan, F. M.; Turky, A. M.; Abd El-Moemen, A. Adsorp. Sci. Technol. 2001, 19, 779-793.
https://doi.org/10.1260/0263617011494583

[6]. Moreno, T.; Garcia-Serna, J.; Jose Cocero, M. J. Supercrit. Fluids 2011, 57, 227-235.
https://doi.org/10.1016/j.supflu.2011.04.001

[7]. He, W.; Zhou, Y. T.; Wamer, W. G.; Hu, X.; Wu, X.; Zheng, Z.; Boudreau, M. D. Yin, J. J. Biomaterials 2013, 34, 765-773.
https://doi.org/10.1016/j.biomaterials.2012.10.010

[8]. Khetre, S. M.; Jadhav, H. V.; Bangale, S. V.; Jagdale, P. N.; Bamane, S. R. Adv. Appl. Sci. Res. 2011, 2, 252-259.

[9]. Ghozza, A. M. Matter Lett. 2003, 57, 2120-2129.
https://doi.org/10.1016/S0167-577X(02)01162-X

[10]. Zhou, H.; Shen, Y. F.; Wang, J. Y.; Chen, X.; O'Young, C. L.; Suib, S. L. J. Catal. 1998, 176, 321-328.
https://doi.org/10.1006/jcat.1998.2061

[11]. Dantas, T. L. P.; Mendonca, V. P.; Jose, H. J.; Rodrigues, A. E.; Moreira, R. Chem. Eng. J. 2006, 118, 77-82.
https://doi.org/10.1016/j.cej.2006.01.016

[12]. Cuzzola, A.; Bernini, M.; Salvadori, P. Appl. Catal. B. 2002, 36, 231-237.
https://doi.org/10.1016/S0926-3373(01)00311-3

[13]. Moura, F. C. C.; Oliveira, G. C.; Araujo, M. H.; Ardisson, J. D.; Macedo, W.; Lago, R. M. Appl. Catal. A. 2006, 307, 195-204.
https://doi.org/10.1016/j.apcata.2006.03.037

[14]. Vielstich, W.; Gasteiger, H. A.; Lamm. A., Fuel Cell Technology and Applications Part I. John Wiley & Sons, New York, 2003, pp. 648-662.

[15]. Trimm S. D. L.; Onsan, Z. I. Catal. Rev. 2001, 43, 31-84.
https://doi.org/10.1081/CR-100104386

[16]. Sethuraman, V. A.; Weidner, J. W.; Haug, A. T.; Motupally, S.; Protsailo, L. V. J. Electrochem. Soc. 2008, 155(1), 50-57.
https://doi.org/10.1149/1.2801980

[17]. Burch, R. Phys. Chem. Chem. Phys. 2006, 8, 5483-5500.
https://doi.org/10.1039/B607837K

[18]. Andreeva, D.; Ivanov, I.; Ilieva, L.; Sobczak, J. W.; Avdeev, G.; Petrov, K. Top. Catal. , 2007, 44, 173-182.
https://doi.org/10.1007/s11244-007-0291-y

[19]. Fu, Q.; Weber, A.; Flytzani-Stephanopoulos, M. Catal. Lett. 2001, 77, 87-95.
https://doi.org/10.1023/A:1012666128812

[20]. Fu, Q.; Kudriavtseva, S.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Chem. Engin. J. 2003, 93, 41-53.
https://doi.org/10.1016/S1385-8947(02)00107-9

[21]. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301-309.

[22]. Bond, G. C.; Thompson, D. T. Catal. Rev. Sci. Eng. 1999, 41, 319-388.
https://doi.org/10.1081/CR-100101171

[23]. Concepcion, P.; Carrettin, S.; Corma, A. Appl. Catal. A. 2006, 307, 42-45.
https://doi.org/10.1016/j.apcata.2006.03.004

[24]. Han, Y. F.; Phonthammachai, N.; Ramesh, K.; Zhong, Z.; White, T. Environ. Sci. Technol. 2008, 42, 908-912.
https://doi.org/10.1021/es071124f

[25]. Kiyonaga, T.; Jin, Q.; Kobayashi, H.; Tada, H. Chem. Phys. Chem. 2009, 10, 2935-2938.
https://doi.org/10.1002/cphc.200900596

[26]. Luo, T.; Vohs, J. M.; Gorte, R. J. J. Catal. 2002, 210, 397-404.
https://doi.org/10.1006/jcat.2002.3689

[27]. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935-938.
https://doi.org/10.1126/science.1085721

[28]. Kim, C. H.; Thompson, L. T. J. Catal. 2006, 244, 248-250.
https://doi.org/10.1016/j.jcat.2006.08.018

[29]. Karpenko, A.; Leppelt, R.; Plzak, V.; Behm, R. J. J. Catal. 2007, 252, 231-242.
https://doi.org/10.1016/j.jcat.2007.09.017

[30]. Deren, J.; Haber, J. J. Catal. 1965, 4, 22-33.

[31]. Fu, Q.; Deng, W.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Appl. Catal. B 2005, 56, 57-68.
https://doi.org/10.1016/j.apcatb.2004.07.015

[32]. Holm, R.; Storp, S. Appl. Phys. 1976, 9, 217-222.
https://doi.org/10.1007/BF00900608

[33]. Pireaux, J. J.; Liehr, M.; Thiry, P. A.; Delrue, J. P.; Caudano, R. Surf. Sci. 1984, 141, 221-232.
https://doi.org/10.1016/0039-6028(84)90207-3

[34]. Briggs, D.; Seah, M. P. Practical Surface Analysis-Auger and X-Ray Photoelectron Spectroscopy. John Wiley & Sons, Chichester, 1990.

[35]. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corp., Eden Prairie, USA, 1992.

[36]. Abd El-Moemen, A.; Karpenko, A.; Denkwitz, Y.; Behm, R. J. J. Power Sources. 2009, 190, 64-75.
https://doi.org/10.1016/j.jpowsour.2008.07.084

[37]. Abd El-Moemen, A.; Kucerova, G. Behm, R. J. Appl. Catal. B 2010, 95, 57-70.
https://doi.org/10.1016/j.apcatb.2009.12.009

[38]. Abd El-Moemen, A; Abdel-Mageed, A. M.; Bansmann, J.; Parlinska-Wojtan, M.; Behm, R. J.; Kucerova, G. J. Catal. 2016, 341, 160-179.
https://doi.org/10.1016/j.jcat.2016.07.005

[39]. Bansmann, J.; Kucerova, G.; Abdel-Mageed, A. M.; Abd El-Moemen, A.; Behm, R. J. J. Electr. Spectrosc. Relat. Phenom. 2017, 220, 86-90.
https://doi.org/10.1016/j.elspec.2017.01.002

[40]. Dominguez, C. M.; Quintanilla, A.; Casas, J. A.; Rodriguez, J. J. Chem. Eng. J. 2014, 253, 486-492.
https://doi.org/10.1016/j.cej.2014.05.063

[41]. Rezwan, M. M.; Ohsaka, T. Anal. Chem. 2006, 78, 1200-1205.
https://doi.org/10.1021/ac0515935

[42]. Serra-Maia, R.; Bellier, M.; Chastka, S.; Tranhuu, K.; Subowo, A.; Rimstidt, J. D.; Usov, P. M.; Morris, A. J.; Michel F. M. ACS Appl. Mater. Interfaces 2018, 10(25), 21224-21234.
https://doi.org/10.1021/acsami.8b02345

How to cite


Abd El-Moemen, A. Eur. J. Chem. 2019, 10(4), 317-322. doi:10.5155/eurjchem.10.4.317-322.1895
Abd El-Moemen, A. Catalytic activity of nanosized Au/CeO2 catalyst towards H2O2 decomposition and the role of cationic/metallic ratio in its activity. Eur. J. Chem. 2019, 10(4), 317-322. doi:10.5155/eurjchem.10.4.317-322.1895
Abd El-Moemen, A. (2019). Catalytic activity of nanosized Au/CeO2 catalyst towards H2O2 decomposition and the role of cationic/metallic ratio in its activity. European Journal of Chemistry, 10(4), 317-322. doi:10.5155/eurjchem.10.4.317-322.1895
Abd El-Moemen, Ayman. "Catalytic activity of nanosized Au/CeO2 catalyst towards H2O2 decomposition and the role of cationic/metallic ratio in its activity." European Journal of Chemistry [Online], 10.4 (2019): 317-322. Web. 22 Jan. 2020
Abd El-Moemen, Ayman. "Catalytic activity of nanosized Au/CeO2 catalyst towards H2O2 decomposition and the role of cationic/metallic ratio in its activity" European Journal of Chemistry [Online], Volume 10 Number 4 (31 December 2019)

DOI Link: https://doi.org/10.5155/eurjchem.10.4.317-322.1895

| | | | |

| | | | | |

Save to Zotero Save to Mendeley

European Journal of Chemistry 2019, 10(4), 317-322 | doi: https://doi.org/10.5155/eurjchem.10.4.317-322.1895 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Author

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.

hatay escort hatay escort corlu escort corum escort burgaz escort giresun escort aydin escort ordu escort erzincan escort hatay escort sivas escort rize escort edirne escort aksaray escort kibris escort isparta escort erzurum escort tekirdag escort usak escort urfa escort kastamonu escort kibris escort manisa escort giresun escort urfa escort nevsehir escort sivas escort yalova escort ordu escort hatay escort yalova escort amasya escort kayseri escort ordu escort maras escort canakkale escort yalova escort balikesir escort manisa escort urfa escort mugla escort trabzon escort bolu escort corlu escort diyarbakir escort isparta escort kutahya escort elazig escort erzurum escort sakarya escort afyon escort kutahya escort konya escort agri escort cesme escort sinop escort sivas escort konya escort kibris escort adapazari escort luleburgaz escort adana escort kibris escort rize escort sakarya escort alanya escort isparta escort burdur escort konya escort bitlis escort canakkale escort sivas escort amasya escort mus escort aydin escort van escort yalova escort kastamonu escort mardin escort bolu escort afyon escort sakarya escort isparta escort tokat escort trakya escort bayburt escort urfa escort mardin escort