European Journal of Chemistry

Catalytic activity of nanosized Au/CeO2 catalyst towards H2O2 decomposition and the role of cationic/metallic ratio in its activity

Crossmark


Main Article Content

Ayman Abd El-Moemen

Abstract

The catalytic decomposition of H2O2 on differently pre-treated Au/CeO2 catalyst was studied by kinetic measurements at 20-50 °C. The prepared catalyst was subjected to pre-treatment by heating either in oxidative (10% O2/N2) or inert (pure N2)atmosphere at 400 °C. The different oxidation states of gold were determined by X-ray photoelectron spectroscopy measurements. The Au/CeO2 catalyst exhibited an excellent catalytic activity towards H2O2 decomposition. The catalytic activity of oxygen pre-treated sample was about twice higher than that measured for nitrogen pre-treated sample. This finding ran parallel to the amount of Aun+ as determined by XPS, indicating the role played by Aun+ species as the most active catalyst’s constituent. However, one cannot overlook the role of metallic gold in catalyzing the H2O2, decomposition showing small activity compared to that of cationic gold. The average crystallites size of metallic gold particles was found to be 7±0.5 nm independent of the pre-treatment conditions. The apparent activation energy of the catalyzed reaction was found to be 46.5 and 47.8 kJ/mol for oxygen and nitrogen pre-treatment, respectively.


icon graph This Abstract was viewed 1177 times | icon graph Article PDF downloaded 548 times

How to Cite
(1)
Abd El-Moemen, A. Catalytic Activity of Nanosized Au CeO2 Catalyst towards H2O2 Decomposition and the Role of Cationic Metallic Ratio in Its Activity. Eur. J. Chem. 2019, 10, 317-322.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Lousada, C. M.; Jonsson, M. J. Phys. Chem. 2010, 114, 11202- 11208.
https://doi.org/10.1021/jp1028933

[2]. Lousada, C. M.; Johansson, A. J.; Brinck, T.; Jonsson, M. J. Phys. Chem. C. 2012, 116, 9533-9543
https://doi.org/10.1021/jp300255h

[3]. Naya, S.; Teranishi, M.; Kimura, K.; Tada, H. Chem. Commun. , 2011, 47, 3230-3232.
https://doi.org/10.1039/c0cc03047c

[4]. El-Shobaky, G. A.; Radwan, F. M.; Turky, A. M.; Abd El-Moemen, A. Adsorp. Sci. Technol. 2000, 18, 799-811.
https://doi.org/10.1260/0263617001493828

[5]. El-Shobaky, G. A.; Radwan, F. M.; Turky, A. M.; Abd El-Moemen, A. Adsorp. Sci. Technol. 2001, 19, 779-793.
https://doi.org/10.1260/0263617011494583

[6]. Moreno, T.; Garcia-Serna, J.; Jose Cocero, M. J. Supercrit. Fluids 2011, 57, 227-235.
https://doi.org/10.1016/j.supflu.2011.04.001

[7]. He, W.; Zhou, Y. T.; Wamer, W. G.; Hu, X.; Wu, X.; Zheng, Z.; Boudreau, M. D. Yin, J. J. Biomaterials 2013, 34, 765-773.
https://doi.org/10.1016/j.biomaterials.2012.10.010

[8]. Khetre, S. M.; Jadhav, H. V.; Bangale, S. V.; Jagdale, P. N.; Bamane, S. R. Adv. Appl. Sci. Res. 2011, 2, 252-259.

[9]. Ghozza, A. M. Matter Lett. 2003, 57, 2120-2129.
https://doi.org/10.1016/S0167-577X(02)01162-X

[10]. Zhou, H.; Shen, Y. F.; Wang, J. Y.; Chen, X.; O'Young, C. L.; Suib, S. L. J. Catal. 1998, 176, 321-328.
https://doi.org/10.1006/jcat.1998.2061

[11]. Dantas, T. L. P.; Mendonca, V. P.; Jose, H. J.; Rodrigues, A. E.; Moreira, R. Chem. Eng. J. 2006, 118, 77-82.
https://doi.org/10.1016/j.cej.2006.01.016

[12]. Cuzzola, A.; Bernini, M.; Salvadori, P. Appl. Catal. B. 2002, 36, 231-237.
https://doi.org/10.1016/S0926-3373(01)00311-3

[13]. Moura, F. C. C.; Oliveira, G. C.; Araujo, M. H.; Ardisson, J. D.; Macedo, W.; Lago, R. M. Appl. Catal. A. 2006, 307, 195-204.
https://doi.org/10.1016/j.apcata.2006.03.037

[14]. Vielstich, W.; Gasteiger, H. A.; Lamm. A., Fuel Cell Technology and Applications Part I. John Wiley & Sons, New York, 2003, pp. 648-662.

[15]. Trimm S. D. L.; Onsan, Z. I. Catal. Rev. 2001, 43, 31-84.
https://doi.org/10.1081/CR-100104386

[16]. Sethuraman, V. A.; Weidner, J. W.; Haug, A. T.; Motupally, S.; Protsailo, L. V. J. Electrochem. Soc. 2008, 155(1), 50-57.
https://doi.org/10.1149/1.2801980

[17]. Burch, R. Phys. Chem. Chem. Phys. 2006, 8, 5483-5500.
https://doi.org/10.1039/B607837K

[18]. Andreeva, D.; Ivanov, I.; Ilieva, L.; Sobczak, J. W.; Avdeev, G.; Petrov, K. Top. Catal. , 2007, 44, 173-182.
https://doi.org/10.1007/s11244-007-0291-y

[19]. Fu, Q.; Weber, A.; Flytzani-Stephanopoulos, M. Catal. Lett. 2001, 77, 87-95.
https://doi.org/10.1023/A:1012666128812

[20]. Fu, Q.; Kudriavtseva, S.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Chem. Engin. J. 2003, 93, 41-53.
https://doi.org/10.1016/S1385-8947(02)00107-9

[21]. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301-309.

[22]. Bond, G. C.; Thompson, D. T. Catal. Rev. Sci. Eng. 1999, 41, 319-388.
https://doi.org/10.1081/CR-100101171

[23]. Concepcion, P.; Carrettin, S.; Corma, A. Appl. Catal. A. 2006, 307, 42-45.
https://doi.org/10.1016/j.apcata.2006.03.004

[24]. Han, Y. F.; Phonthammachai, N.; Ramesh, K.; Zhong, Z.; White, T. Environ. Sci. Technol. 2008, 42, 908-912.
https://doi.org/10.1021/es071124f

[25]. Kiyonaga, T.; Jin, Q.; Kobayashi, H.; Tada, H. Chem. Phys. Chem. 2009, 10, 2935-2938.
https://doi.org/10.1002/cphc.200900596

[26]. Luo, T.; Vohs, J. M.; Gorte, R. J. J. Catal. 2002, 210, 397-404.
https://doi.org/10.1006/jcat.2002.3689

[27]. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935-938.
https://doi.org/10.1126/science.1085721

[28]. Kim, C. H.; Thompson, L. T. J. Catal. 2006, 244, 248-250.
https://doi.org/10.1016/j.jcat.2006.08.018

[29]. Karpenko, A.; Leppelt, R.; Plzak, V.; Behm, R. J. J. Catal. 2007, 252, 231-242.
https://doi.org/10.1016/j.jcat.2007.09.017

[30]. Deren, J.; Haber, J. J. Catal. 1965, 4, 22-33.

[31]. Fu, Q.; Deng, W.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Appl. Catal. B 2005, 56, 57-68.
https://doi.org/10.1016/j.apcatb.2004.07.015

[32]. Holm, R.; Storp, S. Appl. Phys. 1976, 9, 217-222.
https://doi.org/10.1007/BF00900608

[33]. Pireaux, J. J.; Liehr, M.; Thiry, P. A.; Delrue, J. P.; Caudano, R. Surf. Sci. 1984, 141, 221-232.
https://doi.org/10.1016/0039-6028(84)90207-3

[34]. Briggs, D.; Seah, M. P. Practical Surface Analysis-Auger and X-Ray Photoelectron Spectroscopy. John Wiley & Sons, Chichester, 1990.

[35]. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corp., Eden Prairie, USA, 1992.

[36]. Abd El-Moemen, A.; Karpenko, A.; Denkwitz, Y.; Behm, R. J. J. Power Sources. 2009, 190, 64-75.
https://doi.org/10.1016/j.jpowsour.2008.07.084

[37]. Abd El-Moemen, A.; Kucerova, G. Behm, R. J. Appl. Catal. B 2010, 95, 57-70.
https://doi.org/10.1016/j.apcatb.2009.12.009

[38]. Abd El-Moemen, A; Abdel-Mageed, A. M.; Bansmann, J.; Parlinska-Wojtan, M.; Behm, R. J.; Kucerova, G. J. Catal. 2016, 341, 160-179.
https://doi.org/10.1016/j.jcat.2016.07.005

[39]. Bansmann, J.; Kucerova, G.; Abdel-Mageed, A. M.; Abd El-Moemen, A.; Behm, R. J. J. Electr. Spectrosc. Relat. Phenom. 2017, 220, 86-90.
https://doi.org/10.1016/j.elspec.2017.01.002

[40]. Dominguez, C. M.; Quintanilla, A.; Casas, J. A.; Rodriguez, J. J. Chem. Eng. J. 2014, 253, 486-492.
https://doi.org/10.1016/j.cej.2014.05.063

[41]. Rezwan, M. M.; Ohsaka, T. Anal. Chem. 2006, 78, 1200-1205.
https://doi.org/10.1021/ac0515935

[42]. Serra-Maia, R.; Bellier, M.; Chastka, S.; Tranhuu, K.; Subowo, A.; Rimstidt, J. D.; Usov, P. M.; Morris, A. J.; Michel F. M. ACS Appl. Mater. Interfaces 2018, 10(25), 21224-21234.
https://doi.org/10.1021/acsami.8b02345

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).