European Journal of Chemistry 2020, 11(3), 217-222 | doi: https://doi.org/10.5155/eurjchem.11.3.217-222.2008 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Adsorption and diffusion of H2 and CO on UiO-66: A Monte Carlo simulation study


Negin Davoodian (1,*) orcid , Zahra Khoshbin (2) orcid

(1) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(2) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(*) Corresponding Author

Received: 18 Jul 2020 | Revised: 18 Aug 2020 | Accepted: 21 Aug 2020 | Published: 30 Sep 2020 | Issue Date: September 2020

Abstract


Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have attracted much attention for the adsorption of small molecules, due to the large size of the cavities. In this study, we investigate the adsorption and diffusion of hydrogen (H2) and carbon monoxide (CO) guest molecules to the UiO-66 framework, as one of the most widely used MOFs, by using Monte Carlo simulation method. The results prove that an increment in the temperature decreases the amount of the adsorbed H2 and CO on the UiO-66 framework. While an enhancement of the pressure increases the amount of the adsorbed H2 and CO on the UiO-66 framework. Besides, the adsorption of H2 and CO on UiO-66 is the type I isotherm. The calculated isosteric heat for CO/UiO-66 is slightly higher than that of H2/UiO-66. The means of square displacement (MSD) value is less for CO molecule; hence, the movement of the guest molecule within the host cavity slows down and the guest molecule travels a shorter distance over a period of time. The guest molecule with higher molecular mass possesses less mobility, and therefore, it will have less permeability.


Keywords


UiO-66; Diffusion; Hydrogen; Adsorption; Carbon monoxide; Metal-organic framework

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.11.3.217-222.2008

Links for Article


| | | | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 74 times | PDF Article downloaded 24 times

Funding information


The Research Council of Ferdowsi University of Mashhad (Grant No. 3/45796), Mashhad 91775-1436, Iran.

References

[1]. Sun, X.; Li, J.; Qiao, H.; Zhang, B. Appl. Energy 2017, 196, 118-131. ‏
https://doi.org/10.1016/j.apenergy.2016.12.088

[2]. Niakolas, D. K.; Daletou, M.; Neophytides, S. G.; Vayenas, C. G. Ambio. 2016, 45(1), 32-37. ‏
https://doi.org/10.1007/s13280-015-0731-z

[3]. Das, V.; Padmanaban, S.; Venkitusamy, K.; Selvamuthukumaran, R.; Blaabjerg, F.; Siano, P. Renew. Sust. Energ. Rev. 2017, 73, 10-18. ‏
https://doi.org/10.1016/j.rser.2017.01.148

[4]. Gilman, S. J. Phys. Chem. 1963, 67(1), 78-84. ‏
https://doi.org/10.1021/j100795a018

[5]. Shadman, M.; Yeganegi, S.; Galugahi, M. R. J. Iranian Chem. Soc. 2016, 13(2), 207-220. ‏
https://doi.org/10.1007/s13738-015-0728-3

[6]. Tian, Z.; Dong, S. Inter. J. Hydrog. Energy 2016, 41(2), 1053-1059. ‏
https://doi.org/10.1016/j.ijhydene.2015.10.031

[7]. Zhang, W.; Zhang, Z.; Zhang, F.; Yang, W. Appl. Surf. Sci. 2016, 386, 247-254. ‏
https://doi.org/10.1016/j.apsusc.2016.06.019

[8]. Yang, S.; Lin, X.; Dailly, A.; Blake, A. J.; Hubberstey, P.; Champness, N. R.; Schroder, M. Chem. Eur. J. 2009, 15(19), 4829-4835. ‏
https://doi.org/10.1002/chem.200802292

[9]. Gomez, D. A.; Sastre, G. Phys. Chem. Chem. Phys. 2011, 13(37), 16558-16568. ‏
https://doi.org/10.1039/c1cp21865d

[10]. Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Lan, Y. Q. Angew. Chem. Inter. 2018, 57(37), 12106-12110. ‏
https://doi.org/10.1002/anie.201806862

[11]. Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Zhou, H. C. Coord. Chem. Rev. 2011, 255(15-16), 1791-1823. ‏
https://doi.org/10.1016/j.ccr.2011.02.012

[12]. Rowsell, J. L.; Spencer, E. C.; Eckert, J.; Howard, J. A.; Yaghi, O. M. Science 2005, 309(5739), 1350-1354. ‏
https://doi.org/10.1126/science.1113247

[13]. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Pure Appl. Chem. 2015, 87(9-10), 1051-1069. ‏
https://doi.org/10.1515/pac-2014-1117

[14]. Yang, Z.; Xia, Y.; Sun, X.; Mokaya, R. J. Phys. Chem. B 2006, 110(37), 18424-18431. ‏
https://doi.org/10.1021/jp0639849

[15]. Xie, H.; Shen, Y.; Zhou, G.; Chen, S.; Song, Y.; Ren, J. Mater. Chem. Phys. 2013, 141(1), 203-207.
https://doi.org/10.1016/j.matchemphys.2013.04.045

[16]. Greathouse, J. A.; Allendorf, M. D. J. Am. Chem. Soc. 2016, 128(33), 10678-10679. ‏
https://doi.org/10.1021/ja063506b

[17]. Zheng, B.; Yun, R.; Bai, J.; Lu, Z.; Du, L.; Li, Y. Inorg. Chem. 2013, 52(6), 2823-2829. ‏
https://doi.org/10.1021/ic301598n

[18]. Belof, J. L.; Stern, A. C.; Eddaoudi, M.; Space, B. J. Am. Chem. Soc. 2007, 129(49), 15202-15210. ‏
https://doi.org/10.1021/ja0737164

[19]. Colon, Y. J.; Brand, S. K.; Snurr, R. Q. Chem. Phys. Lett. 2013, 577, 76-81.
https://doi.org/10.1016/j.cplett.2013.05.021

[20]. Yang, Q.; Zhong, C. J. Phys. Chem. B 2005, 109(24), 11862-11864. ‏
https://doi.org/10.1021/jp051903n

[21]. BIOVIA Materials Studio, Retrieved Aug 01, 2020, from https://www.3ds.com/products-services/biovia/products/ molecular-modeling-simulation/biovia-materials-studio/

[22]. Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lamberti, C. Chem. Mater. 2011, 23(7), 1700-1718. ‏
https://doi.org/10.1021/cm1022882

[23]. Fast, C. D.; Woods, J.; Lentchner, J.; Makal, T. A. Dalton Trans. 2019, 48(39), 14696-14704. ‏
https://doi.org/10.1039/C9DT03004B

[24]. Zhou, L.; Zhou, Y. Inter. J. Hydrog. Energ. 2001, 26(6), 597-601. ‏
https://doi.org/10.1016/S0360-3199(00)00123-3

[25]. Chen, C.; Chen, D.; Xie, S.; Quan, H.; Luo, X.; Guo, L. ACS Appl. Mater. Interf. 2017, 9(46), 41043-41054. ‏
https://doi.org/10.1021/acsami.7b13443

[26]. Uneyama, T.; Miyaguchi, T.; Akimoto, T. Phys. Rev. E 2015, 92(3), 032140. ‏
https://doi.org/10.1103/PhysRevE.92.032140

[27]. Solcova, O.; Snajdaufova, H.; Schneider, P. Chem. Eng. Sci. 2001, 56(17), 5231-5237. ‏
https://doi.org/10.1016/S0009-2509(01)00149-X

How to cite


Davoodian, N.; Khoshbin, Z. Eur. J. Chem. 2020, 11(3), 217-222. doi:10.5155/eurjchem.11.3.217-222.2008
Davoodian, N.; Khoshbin, Z. Adsorption and diffusion of H2 and CO on UiO-66: A Monte Carlo simulation study. Eur. J. Chem. 2020, 11(3), 217-222. doi:10.5155/eurjchem.11.3.217-222.2008
Davoodian, N., & Khoshbin, Z. (2020). Adsorption and diffusion of H2 and CO on UiO-66: A Monte Carlo simulation study. European Journal of Chemistry, 11(3), 217-222. doi:10.5155/eurjchem.11.3.217-222.2008
Davoodian, Negin, & Zahra Khoshbin. "Adsorption and diffusion of H2 and CO on UiO-66: A Monte Carlo simulation study." European Journal of Chemistry [Online], 11.3 (2020): 217-222. Web. 31 Oct. 2020
Davoodian, Negin, AND Khoshbin, Zahra. "Adsorption and diffusion of H2 and CO on UiO-66: A Monte Carlo simulation study" European Journal of Chemistry [Online], Volume 11 Number 3 (30 September 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.11.3.217-222.2008

| | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2020, 11(3), 217-222 | doi: https://doi.org/10.5155/eurjchem.11.3.217-222.2008 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.