European Journal of Chemistry

Activation parameter changes as a mechanistic tool in SN2 reactions in solution



Main Article Content

Vladislav Mikhailovich Vlasov

Abstract

Recent applications of activation parameters variation approach to the elucidation of SN2 reaction mechanisms have led to further clarifications of structures of transition states involved in the concerted reaction pathway. SN2 reactions in solution are reviewed with special emphasis of activation parameter variation ΔX (X = H, S and G) with substituents in the nucleophile, leaving and nonleaving groups applying linear free energy relationships in order to evaluate the resultant δΔXreaction constants. The use of internal enthalpy reaction constants δΔHint as a mechanistic tool is stressed when the structure of transition state in SN2 reaction is changed. Variations of the activation parameters in SN2 reactions and their mechanisms were analyzed.


icon graph This Abstract was viewed 2088 times | icon graph Article PDF downloaded 838 times

How to Cite
(1)
Vlasov, V. M. Activation Parameter Changes As a Mechanistic Tool in SN2 Reactions in Solution. Eur. J. Chem. 2015, 6, 225-236.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ingold, C. K. Structure and Mechanism in Organic Chemistry. Cornell University Press, Ithaca, New York, 1953.

[2]. Carey, F. A.; Sundbery, R. J. Adv. Org. Chem. A: Structure and Mechanisms, 5th Ed. Springer, New York, 2007.

[3]. Williams, A. Concerted Organic and Bio-organic Mechanisms. CRC Press, Boca Baton, 2000.

[4]. Shaik, S. S.; Schlegel, H. B.; Wolfe, S. Theoretical Aspects of Physical Organic Chemistry, the SN2 Mechanism. Wiley, New York, 1992.

[5]. Pross, A. Theoretical and Physical Principles of Organic Reactivity. Wiley, New York, 1995.

[6]. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry. University Science Books, Sausalito, CA, 2006.

[7]. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry. 4th Ed. VCH, Weinheim, 2003.

[8]. Lee, I. Chem. Soc. Rev. 1990, 19, 317-333.
http://dx.doi.org/10.1039/cs9901900317

[9]. Uggerud, E. J. Phys. Org. Chem. 2006, 19, 461-466.
http://dx.doi.org/10.1002/poc.1061

[10]. Lee, I.; Sung, D. D. Anilines as Nucleophiles. In The Chemistry of anilines. Rappoport, Z., Ed. Wiley, Chichester, 2007, pp. 537-581, Chapter 10.
http://dx.doi.org/10.1002/9780470871737.ch10

[11]. Ji, P.; Atherton, J.; Page, M. I. Org. Biomol. Chem. 2012, 10, 5732-5739.
http://dx.doi.org/10.1039/c2ob25064k

[12]. Lee, I. Chem. Soc. Rev. 1995, 24, 223-229.
http://dx.doi.org/10.1039/cs9952400223

[13]. Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217-270.

[14]. Hengge, A. C. Acc. Chem. Res. 2002, 35, 105-112.
http://dx.doi.org/10.1021/ar000143q

[15]. Simmon, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066-3072.
http://dx.doi.org/10.1002/anie.201107334

[16]. Leffler, J. F.; Grunwald, E. Rates and Equilibria of Organic Reactions. Wiley, New York, London, 1963.

[17]. Hammett, L. P. Physical Organic Chemistry, Reaction Rates, Equilibria and Mechanisms. McGraw Hill, New York, 1970.

[18]. Johnson, C. D. The Hammett Equation. Cambridge University Press, Cambridge, 1973.

[19]. Williams, A. Free Energy Relationships in Organic and Bio-organic Chemistry. The Royal Society of Chemistry, Cambridge, 2003.

[20]. Ammal, S. C.; Mishima, M.; Yamataka, H. J. Org. Chem. 2003, 68, 7772-7778.
http://dx.doi.org/10.1021/jo034971j

[21]. Itoh, S.; Yamataka, H. Chem. Eur. J. 2011, 17, 1230-1237.
http://dx.doi.org/10.1002/chem.201001926

[22]. Itoh, S.; Yoshimura, N.; Sato, M.; Yamataka, H. J. Org. Chem. 2011, 76, 8294-8299.
http://dx.doi.org/10.1021/jo201485y

[23]. Vlasov, V. M. Russ. Chem. Rev. 2006, 75, 765-796.
http://dx.doi.org/10.1070/RC2006v075n09ABEH003614

[24]. Vlasov, V. M. J. Phys. Org. Chem. 2010, 23, 468-476.

[25]. Vlasov, V. M. New J. Chem. 2010, 34, 1408-1416.
http://dx.doi.org/10.1039/c0nj00058b

[26]. Vlasov, V. M. New J. Chem. 2010, 34, 2962-2970.
http://dx.doi.org/10.1039/c0nj00419g

[27]. Vlasov, V. M. J. Phys. Org. Chem. 2012, 25, 296-308.
http://dx.doi.org/10.1002/poc.1912

[28]. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165- 195.
http://dx.doi.org/10.1021/cr00002a004

[29]. Nummert, V.; Piirsalu, M. J. Chem. Soc. Perkin Trans. 2 2000, 583-593.
http://dx.doi.org/10.1039/a904741g

[30]. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139.
http://dx.doi.org/10.1039/cs9962500129

[31]. Krygowski, T. M.; Stepien, B. T. hem. Rev. 2005, 105, 3482-3512.

[32]. Palusiak, M.; Krygowski, T. M. New J. Chem. 2009, 33, 1753-1759.
http://dx.doi.org/10.1039/b905909a

[33]. Exner, O.; Bohm, S. Curr. Org. Chem. 2006, 10, 763-778.
http://dx.doi.org/10.2174/138527206776818892

[34]. Hepler, L. G. J. Am. Chem. Soc. 1963, 85, 3089-3092.
http://dx.doi.org/10.1021/ja00903a008

[35]. Hepler, L. G. Can. J. Chem. 1971, 49, 2803-2807.
http://dx.doi.org/10.1139/v71-466

[36]. Ruff, F. J. Mol. Struct. (Theochem) 2002, 617, 31-45.
http://dx.doi.org/10.1016/S0166-1280(02)00398-6

[37]. Ruff, F. J. Mol. Struct. (Theochem) 2003, 625, 111-120.
http://dx.doi.org/10.1016/S0166-1280(03)00008-3

[38]. Ruff, F. Internet Electron. J. Des. 2004, 3, 474-498.

[39]. Ruff, F.; Farkas, O. J. Org. Chem. 2006, 71, 3409-3416.
http://dx.doi.org/10.1021/jo052101r

[40]. Ruff, F.; Farkas, O.; Kucsman, A. Eur. J. Org. Chem. 2006, 5570.
http://dx.doi.org/10.1002/ejoc.200600543

[41]. Fabian, A.; Ruff, F.; Farkas, O. J. Phys. Org. Chem. 2008, 21, 988-996.
http://dx.doi.org/10.1002/poc.1412

[42]. Exner, O. Prog. Phys. Org. Chem. 1973, 10, 411-482.

[43]. Liu, L.; Guo, Q. X. Chem. Rev. 2001, 101, 673-695.
http://dx.doi.org/10.1021/cr990416z

[44]. Robertson, R. E.; Stein, A.; Sugamori, S. E. Can. J. Chem. 1966, 44, 685-688.
http://dx.doi.org/10.1139/v66-095

[45]. Robertson, R. E. Can. J. Chem. 1953, 31, 589-601.
http://dx.doi.org/10.1139/v53-082

[46]. Hoffman, R. V.; Shankweiler, J. M. J. Am. Chem. Soc. 1986, 108, 5536-5539.
http://dx.doi.org/10.1021/ja00278a028

[47]. Sentega, R. V.; Vizgert, R. V.; Mikhalevich, M. K. Org. React. 1970, 7, 512-537.

[48]. Vizgert, R. V.; Sentega, R. V. Org. React. 1969, 6, 197-213.

[49]. Sentega, R. V.; Mikhalevich, M. K.; Vizgert, R. V. Org. React. 1971, 8, 153-168.

[50]. Arnett, E. M.; Reich, R. J. Am. Chem. Soc. 1980, 102, 5892-5902.
http://dx.doi.org/10.1021/ja00538a031

[51]. Ji, P.; Atherton, J.; Page, M. J. J. Chem. Soc. Faraday Discuss. 2010, 145, 15-25.
http://dx.doi.org/10.1039/B912261N

[52]. Ji, P.; Atherton, J.; Page, M. J. J. Org. Chem. 2011, 76, 1425-1436.
http://dx.doi.org/10.1021/jo102173k

[53]. Svetkin, Y. V.; Mirza, M. M. Org. React. 1971, 8, 875-880.

[54]. Lee, I.; Koh, H. J.; Lee, B. C.; Park, B. S. Bull. Korean Chem. Soc. 1994, 15, 576-581.

[55]. Haberfield, P.; Nudelman, A.; Bloom, A.; Romm, R.; Ginsberg, H. J. Org. Chem. 1971, 36, 1792-1795.
http://dx.doi.org/10.1021/jo00812a016

[56]. Yau, H. M.; Howe, A. G.; Hook, J. M.; Croft, A. K.; Harper, J. B. Org. Biomol. Chem. 2009, 7, 3572-3575.
http://dx.doi.org/10.1039/b909171h

[57]. Gohar, G. A. N.; Khattab, S. N.; Farahat, O. O.; Khalil, H. H. J. Phys. Org. Chem. 2012, 25, 343-350.
http://dx.doi.org/10.1002/poc.1921

[58]. Westaway, K. C.; Waszczylo, Z. Can. J. Chem. 1982, 60, 2500-2520.
http://dx.doi.org/10.1139/v82-360

[59]. Stein, A. R.; Tencer, M.; Moffatt, E. A.; Drawe, R.; Sweet, J. J. Org. Chem. 1980, 45, 3539-3543.
http://dx.doi.org/10.1021/jo01305a045

[60]. Evans, D. P.; Watson, H. B.; Williams, R. J. Chem. Soc. 1939, 1345-1348.
http://dx.doi.org/10.1039/jr9390001345

[61]. Matsui, T.; Tokura, N. Bull. Chem. Soc. Jpn. 1970, 43, 1751-1762.
http://dx.doi.org/10.1246/bcsj.43.1751

[62]. Rao, T. J.; Punnaiah, G.; Sundaram, E. V. Proc. Indian Acad. Sci. (Chem. Sci.) 1986, 97, 55-61.

[63]. Saksena, S. P.; Rose, A. N. Indian J. Chem. 1975, 13, 421-422.

[64]. Vlasov, V. M. Monatsh. Chem. 2013, 144, 41-48.
http://dx.doi.org/10.1007/s00706-012-0765-x

[65]. Soni, A. N.; Pathak, S. B.; Patel, S. R. J. Prakt. Chem. 1972, 314, 780-784.
http://dx.doi.org/10.1002/prac.19723140510

[66]. Ravi, R.; Sanjeev, R.; Jagannadham, V. Int. J. Chem. Kinet. 2013, 45, 803-810.
http://dx.doi.org/10.1002/kin.20818

[67]. Khamis, G.; Stoeva, S.; Aleksiev, D. J. Phys. Org. Chem. 2010, 23, 461-467.

[68]. Perez-Benito, J. F. Monatsh. Chem. 2013, 144, 49-58.
http://dx.doi.org/10.1007/s00706-012-0842-1

[69]. Cooper, A.; Johnson, C. M.; Lakey, J. H.; Nollmann, M. Biophys. Chem. 2001, 93, 215-220.
http://dx.doi.org/10.1016/S0301-4622(01)00222-8

[70]. Cornish-Bowden, A. J. Biosci. 2002, 27, 121-126.
http://dx.doi.org/10.1007/BF02703768

[71]. Starikov, E. B.; Norden, B. J. Phys. Chem. B 2007, 111, 14431-14435.
http://dx.doi.org/10.1021/jp075784i

[72]. Lee, I.; Choi, Y. H.; Rhyu, K. W.; Shim, C. S. J. Chem. Soc. Perkin Trans. 2 1989, 1881-1886.
http://dx.doi.org/10.1039/p29890001881

[73]. Lee, I.; Rhyu, K. W.; Lee, H. W.; Shim, C. S. J. Phys. Org. Chem. 1990, 3, 751-756.
http://dx.doi.org/10.1002/poc.610031109

[74]. Oh, H. K.; Koh, H. J.; Lee, I. J. Chem. Soc. Perkin Trans. 2 1991, 1981-1984.
http://dx.doi.org/10.1039/p29910001981

[75]. Oh, H. K.; Cho, J. H.; Jin, M. J.; Lee, I. J. Phys. Org. Chem. 1994, 7, 629-633.
http://dx.doi.org/10.1002/poc.610071107

[76]. Ando, T.; Tanaka, H.; Yamataka, H. J. Am. Chem. Soc. 1984, 106, 2084-2088.
http://dx.doi.org/10.1021/ja00319a030

[77]. Lee, I.; Sohn, S. C.; Kang, C. H.; Oh, Y. J. J. Chem. Soc. Perkin Trans. 2 1986, 1631-1634.
http://dx.doi.org/10.1039/p29860001631

[78]. Yoh, S. D. J. Korean Chem. Soc. 1975, 19, 116-122.

[79]. Lee, I.; Huh, C.; Koh, H. J.; Lee, H. W. Bull. Korean Chem. Soc. 1988, 9, 376-378.

[80]. Ballistreri, F. P.; Maccarone, E.; Mamo, A. J. Org. Chem. 1976, 41, 3364-3367.
http://dx.doi.org/10.1021/jo00883a005

[81]. Lee, I.; Sohn, S. C.; Song, H. B.; Lee, D. C. J. Korean Chem. Soc. 1984, 28, 155-162.

[82]. Lee, I.; Park, Y. K.; Huh, C.; Lee, H. W. J. Phys. Org. Chem. 1994, 7, 555-560.
http://dx.doi.org/10.1002/poc.610071006

[83]. Kim, S. H.; Yoh, S.-D.; Lim, C.; Mishima, M.; Fujio, M.; Tsuno, Y. J. Phys. Org. Chem. 1998, 11, 254-260.
http://dx.doi.org/10.1002/(SICI)1099-1395(199804)11:4<254::AID-POC2>3.0.CO;2-6

[84]. Lim, C.; Kim, S.-H.; Yoh, S.-D.; Fujio, M.; Tsuno, Y. Tetrahedron Lett. 1997, 38, 3243-3246.
http://dx.doi.org/10.1016/S0040-4039(97)00574-1

[85]. Lee, I.; Kim, I. C. Bull. Korean Chem. Soc. 1988, 9, 133-135.

[86]. Davies, W. C.; Addis, H. W. J. Chem. Soc. 1937, 1622-1627.
http://dx.doi.org/10.1039/jr9370001622

[87]. Li, J.-N.; Fu, Y.; Liu, L.; Guo, Q.-X. Tetrahedron 2006, 62, 11801-11813.
http://dx.doi.org/10.1016/j.tet.2006.09.018

[88]. Kaljurand, I.; Kutt, A.; Soovali, L.; Rodima, T.; Maemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019-1028.
http://dx.doi.org/10.1021/jo048252w

[89]. Tanner, E. E. L.; Yau, H. M.; Hawker, R. R.; Croft, A. K.; Harper, J. B. Org. Biomol. Chem. 2013, 11, 6170-6175.
http://dx.doi.org/10.1039/c3ob41038b

[90]. Lee, I.; Kim, H. Y.; Kang, H. K.; Lee, H. W. J. Org. Chem. 1988, 53, 2678-2683.
http://dx.doi.org/10.1021/jo00247a004

[91]. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529-1550.
http://dx.doi.org/10.1135/cccc19991529

[92]. Oh, Y. K.; Yang, J. H.; Lee, H. W.; Lee, I. New J. Chem, 2000, 24, 213-219.
http://dx.doi.org/10.1039/a909541a

[93]. Bernasconi, C. F.; Michoff, M. E. Z.; de Rossi, R. H.; Granados, A. M. J. Org. Chem. 2007, 72, 1285-1293.
http://dx.doi.org/10.1021/jo062138r

[94]. Bernasconi, C. F.; Perez-Lorenzo, M.; Codding, S. J. J. Org. Chem. 2007, 72, 9456-9463.
http://dx.doi.org/10.1021/jo701422z

[95]. Kondo, Y.; Urade, M.; Yamanishi, Y.; Chen, X. J. Chem. Soc. Perkin Trans. 2 2002, 1449-1454.
http://dx.doi.org/10.1039/b203032m

[96]. Edwards, D. R.; Montoya-Peleaz, P.; Crudden, C. M. Org. Lett. 2007, 9, 5481-5484.
http://dx.doi.org/10.1021/ol702300d

[97]. Lee, I.; Lee, B. S.; Koh, H. J.; Chang, B. D. Bull. Korean Chem. Soc. 1995, 16, 277-281.

[98]. Hallett, J. P.; Liotta, C. L.; Ranieri, G.; Welton, T. J. Org. Chem. 2009, 74, 1864-1868.
http://dx.doi.org/10.1021/jo802121d

[99]. Lee, I.; Shim, C. S.; Chung, S, Y.; Kim, H. Y.; Lee, H. W. J. Chem. Soc. Perkin Trans. 2 1988, 1919-1923.
http://dx.doi.org/10.1039/p29880001919

[100]. Kim, W. K.; Ryu, W. S.; Han, I. S.; Kim, C. K.; Lee, I. J. Phys. Org. Chem. 1998, 11, 115-124.
http://dx.doi.org/10.1002/(SICI)1099-1395(199802)11:2<115::AID-POC985>3.0.CO;2-B

[101]. Cowie, G. R.; Fitches, H. J. M.; Kohnstam, G. J. Chem. Soc. 1963, 1585-1593.

[102]. Fox, J. R.; Kohnstam, G. J. Chem. Soc. 1963, 1593-1598.

[103]. Phan, T. B.; Nolte, C.; Kobayashi, S.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2009, 131, 11392- 11401.

[104]. Bel'skii, V. Е. Russ. Chem. Bull. 2000, 1968-1973.

[105]. Jiang, L.; Orimoto, Y.; Aoki, Y. J. Phys. Org. Chem. 2013, 26, 885-891.
http://dx.doi.org/10.1002/poc.3186

[106]. Rablen, P. R.; McLarney, B. D.; Karlow, B. J.; Schneider, J. E. J. Org. Chem. 2014, 79, 867-879.

[107]. Nettey, S.; Swift, C. A.; Joviliano, R.; Noin, D. O.; Gronert, S. J. Am. Chem. Soc. 2012, 134, 9303-9310.

[108]. Wu, C. H.; Galabov, B.; Wu, J. I. C.; Ilieva, S. I.; Schleyer, P. von R.; Allen, W. D. J. Am. Chem. Soc. 2014, 136, 3118-3126.

[109]. Li, Q. G.; Xue, Y. J. Phys. Chem. A 2009, 113, 10359-10366.

[110]. Wang, T.; Yin, H.; Wang, D.; Valiev, M. J. Phys. Chem. A 2012, 116, 2371-2376.
http://dx.doi.org/10.1021/jp3005986

[111]. Jaworski, J. S. J. Phys. Org. Chem. 2002, 15, 319-323.
http://dx.doi.org/10.1002/poc.490

[112]. Doi, K.; Togano, E.; Xantheas, S. S.; Nakanishi, R.; Nagata, T.; Ebata, T.; Inokuchi, Y. Angew. Chem. Int. Ed. 2013, 52, 4380-4383.
http://dx.doi.org/10.1002/anie.201207697

[113]. Chen, X.; Brauman, J. I. J. Am. Chem. Soc. 2008, 130, 15038-15046.
http://dx.doi.org/10.1021/ja802814a

[114]. Westaway, K. C.; Gao, Y.; Fang, Y. R. J. Org. Chem. 2003, 68, 3084-3089.
http://dx.doi.org/10.1021/jo026879d

[115]. Streitwieser, A.; Jayasree, E. G.; Leung, S. S.-H.; Choy, G. S. C. J. Org. Chem. 2005, 70, 8486-8491.
http://dx.doi.org/10.1021/jo051277q

[116]. Cayzergues, P.; Georgoulis, C.; Mathieu, G. J. Chim. Phys. 1987, 84, 63-70.

[117]. Chen, X.; Regan, C. K.; Craig, S. L.; Krenske, E. H.; Houk, K. N.; Jorgensen, W. L.; Brauman, J. I. J. Am. Chem. Soc. 2009, 131, 16162-161710.
http://dx.doi.org/10.1021/ja9053459

[118]. Mohamed, A. A.; Jensen, F. J. Phys. Chem. A 2001, 105, 3259-3268.
http://dx.doi.org/10.1021/jp002802m

[119]. Laerdahl, J. K.; Uggerud, E. Int. J. Mass Spectrom. 2002, 214, 277-314.
http://dx.doi.org/10.1016/S1387-3806(01)00575-9

[120]. Humeres, E.; Nunes, R. J.; Machado, V. G.; Gasques, M. D. G.; Machado, C. J. Org. Chem. 2001, 66, 1163-1170.
http://dx.doi.org/10.1021/jo0012501

[121]. Melo, A.; Alfaia, A. J. I.; Reis, J. C. R.; Calado, A. R. T. J. Phys. Chem. B 2006, 110, 1877-1888.
http://dx.doi.org/10.1021/jp055660a

[122]. Almerindo, G. I.; Pliego, J. R. Jr. Chem. Phys. Lett. 2006, 423, 459-462.
http://dx.doi.org/10.1016/j.cplett.2006.04.015

[123]. Pliego, J. R. Jr. J. Phys. Chem. B 2009, 113, 505-510.
http://dx.doi.org/10.1021/jp808581t

[124]. Ebrahimi, A.; Habibi, M.; Amirmijani, A. J. Mol. Struct. (Theochem) 2007, 809, 115-124.
http://dx.doi.org/10.1016/j.theochem.2007.01.037

[125]. Im, S.; Jang, S. W.; Kim, H. R.; Oh, Y. H.; Park, S. W.; Lee, S.; Chi, D. Y. J. Phys. Chem. A 2009, 113, 3685-3689.
http://dx.doi.org/10.1021/jp900576x

[126]. Kim, J. Y.; Kim, D. W.; Song, C. E.; Chi, D. Y.; Lee, S. J. Phys. Org. Chem. 2013, 26, 9-14.
http://dx.doi.org/10.1002/poc.3010

[127]. Bento, A. P.; Bickelhaupt, F. M. J. Org. Chem. 2007, 72, 2201-2207.
http://dx.doi.org/10.1021/jo070076e

[128]. Bento, A. P.; Bickelhaupt, F. M. J. Org. Chem. 2008, 73, 7290-7299.
http://dx.doi.org/10.1021/jo801215z

[129]. Bento, A. P.; Bickelhaupt, F. M. Chem. Asian J. 2008, 3, 1783-1792.
http://dx.doi.org/10.1002/asia.200800065

[130]. Van Bochove, M. A.; Bickelhaupt, F. M. Eur. J. Org. Chem. 2008, 649-654.
http://dx.doi.org/10.1002/ejoc.200700953

[131]. Garver, J. M.; Fang, Y. R.; Eyet, N.; Villano, S. M.; Bierbaum, V. M.; Westaway, K. C. J. Am. Chem. Soc. 2010, 132, 3808-3814.
http://dx.doi.org/10.1021/ja909399u

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).