European Journal of Chemistry

Chemical modification/grafting of mesoporous alumina with polydimethylsiloxane (PDMS)

Main Article Content

Ana Filipa de Melo Pinheiro
Arian Nijmeijer
Venkata Giri Prasad Sripathi
Louis Winnubst


A method for polydimethylsiloxane grafting of alumina powders is described which involves chemical modification of the surface of mesoporous (5 nm) γ-alumina flakes with a linker (3-aminopropyltriethoxysilane: APTES), either by a solution phase (SPD) or a vapour phase (VPD) reaction, followed by PDMS grafting. The systems were analysed by FTIR, gas adsorption/desorption and TGA. Grafting is proven by FTIR for all cases, meaning that a covalent bond exists between inorganic particle and organic moiety. It is demonstrated that the way of applying APTES (by SPD or VPD) has an effect on the morphology of linker as well as of PDMS. A more controlled grafting of the APTES linker on γ-alumina is possible by the VPD method, resulting in efficient grafting and good infiltration of PDMS in the pores of the inorganic system. Stability tests on these PDMS grafted alumina show no degradation after 14 days soaking in a wide range of solvents. Surface modification of metal oxide particles by organic moieties via a chemical reaction can adapt its interfacial properties and renders a high chemical stability of these inorganic-organic hybrids. This validates the use of these materials under severe applications like in membranes for solvent nanofiltration or for protein immobilization and resin modification in e.g. chromatographic applications.

icon graph This Abstract was viewed 3755 times | icon graph Article PDF downloaded 936 times

How to Cite
Pinheiro, A. F. de M.; Nijmeijer, A.; Sripathi, V. G. P.; Winnubst, L. Chemical Modification Grafting of Mesoporous Alumina With Polydimethylsiloxane (PDMS). Eur. J. Chem. 2015, 6, 287-295.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Buekenhoudt, A. Stability of Porous Ceramic Membranes; Chapter 1 in: Membrane Science and Technology vol. 13, Ed. by Reyes Mallada and Miguel Menendez, Elsevier (Amsterdam) 2008.

[2]. Tsuru, T.; Miyawaki, M; Kondo, H.; Yoshioka, T.; Asaeda, M. Sep. Purif. Technol. 2003, 32, 105-109.

[3]. Van Gestel, T.; Van der Bruggen, B.; Buekenhoudt, A.; Dotremont, C.; Luyten, J.; Vandecasteele, C.; Maes, G. J. Membr. Sc. 2003, 224, 3-10.

[4]. Randon, J.; Paterson, R. J. Membr. Sci. 1997, 134, 219-223.

[5]. Randon, J.; Blanc, P.; Paterson R. J. Membr. Sci. 1995, 98, 119-129.

[6]. Caro, J.; Noack, M.; Kolsch, P. Microporous Mesoporous Mater. 1998, 321, 321-332.

[7]. Castricum, H.L.; Sah, A.; Mittelmeijer-Hazeleger, M.C.; ten Elshof, J.E. Microporous Mesoporous Mater. 2005, 83, 1-9.

[8]. Pinheiro, A.F.M. Development and characterization of polymer-grafted ceramic membranes of solvent nanofiltration, PhD thesis, University of Twente, Enschede, March, 2013.

[9]. Leger, C.; Lira, H.D.; Paterson, R. J. Membr. Sci. 1996, 135, 187-195.

[10]. Mustafa, G.; Wynes, K.; Vanderzande, P.; Buekenhoudt, A.; Meynen, V. J. Membr. Sic. 2014, 470, 369-377.

[11]. Tarleton, E.S.; Robinson, J.P.; Salman, M. J. Membr. Sci. 2006, 280, 442-441.

[12]. Stafie, N.; Stamatialis, D.F.; Wessling, M. Sep. Purif. Technol. 2005, 46, 220-231.

[13]. Kallury, K.M.R.; MacDonald, P.M.; Thompson, M. Langmuir 1994, 10, 492-499.

[14]. Tripp, C.P.; Hair, M.L. Langmuir 1992, 8, 1961-1967.

[15]. Tripp, C.P.; Hair, M.L. J. Phys. Chem. 1993, 97, 5693-5698.

[16]. Vandenberg, E.T.; Bertilsson, L.; Liedberg, B.; Uvdal, K.; Erlandsson, R.; Elwing, H.; Lundström, I. J. Colloid Interface Sci. 1991, 147, 103-118.

[17]. Culler, S.R.; Ishida, H.; Koenig, J.L. J. Colloid Interface Sci. 1985, 106, 334-346.

[18]. Kurth, D.G.; Bein, Y. Langmuir 1995, 11, 3061-3067.

[19]. Kim, J.; Seidler, P.; Wan, L.S.; Filll, C. J. Colloid Interface Sci. 2009, 329, 114-119.

[20]. Chiang, C.H.; Ishida, H.; Koenig, J.L. J. Colloid Interface Sci. 1980, 74, 396-404.

[21]. Smith, E.M;. Chen, W. Langmuir 2008, 24, 12405-12409.

[22]. Ritter, H.; Nieminen, M.; Karppinen, M.; Brühwiler, D. Microporous Mesoporous Mater. 2009, 121, 79-83.

[23]. Salmio, H.; Brühwiler, D. J. Phys. Chem. C 2007, 111, 923-929.

[24]. Ek, S.; Iiskola, E.I.; Niinisto, L. Langmuir 2003, 19, 3461 3471.

[25]. Bogart, G.R.; Leyden, D.E. J. Colloid Interface Sci. 1994, 167, 27-34.

[26]. White, L.D.; Tripp, C.P. J. Colloid Interface Sci. 2000, 232, 400-407.

[27]. Fadeev, A.Y.; McCarthy, T.J. Langmuir 2000, 16, 7268-7474.

[28]. Chiang, C.H.; Liu, N.I.; Koenig, J.L. J. Colloid Interface Sci. 1982, 86, 26-34.

[29]. Benes, N.; Nijmeijer, A.; Verweij, H. Micorporous silica membranes, pp. 335-372 in: Recent Advances In Gas Separation by Microporous Ceramic Membranes, Ed. by: N. K. Kanellopoulos, Elsevier (Amsterdam), 2000.

[30]. Barret, E.B.; Joyner, L.G.; Halenda, P.P. J. Am. Chem. Soc. 1951, 73, 373-380.

[31]. Culler, S.R.; Ishida, H.; Koenig, J.L. J. Colloid Interface Sci. 1986, 109, 1-10.

[32]. Weigel, C.; Kellner, R. Fresenius Z. Anal. Chem. 1989, 335, 663-668.

[33]. Murata, H.; Matsuura, H.; Ohno, K.; Sato, T. J. Mol. Struc. 1979, 52, 1-11.

[34]. Haller, I. J. Am. Chem. Soc. 1978, 100, 8050-8055.

[35]. Leites, L.A.; Bukalov, S.S.; Yadritzeva, T.S.; Mokhov, M.K.; Antipova, B.A.; Frunze, T.M.; Dement'ev, V.V. Macromolecules 1992, 25, 2991-2993.

[36]. Enescu, D.; Hamciuc, V.; Pricop, L.; Hamaid, T.; Harabagiu, V.; Simionescu, B.C. J. Polym. Res. 2009, 16, 73-80.

[37]. Durdureanu-Angheluta, A.; Pricop, L.; Stoica, I.; Peptu, C.A.; Dascalu, A.; Marangaci, N.; Chiriac, H.; Pinteala, M.; Simionescu, B.C. J. Magn. Magn. Mater. 2010, 322, 2956-2968.

[38]. Fadeev, A.Y.; Kazakevich, Y.V. Langmuir 2002, 18, 2665-2672.

[39]. Pinheiro, A.F.M.; Hoogendoorn, D.; Nijmeijer, A.; Winnubst, L. J. Membr. Sci. 2014, 463, 24-32.

Supporting Agencies

Institute for Sustainable Process Technology (ISPT), Project number, BC-00-05, The Netherlands
Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).