European Journal of Chemistry

Study on the annealing-dependent photoluminescence properties of SnO2 cluster-system structures



Main Article Content

Yunqing Zhu
Yiqing Chen
Xinhua Zhang

Abstract

SnO2 cluster-system structures were synthesized via a two-step temperature-rising thermal evaporation method with short oxidation time. Field emission scanning electron microscopy, X-ray diffraction and transmission electron microscopy were used to characterize the morphological and structural feature of the product as nanowire cluster and nanoparticle cluster. The photoluminescence spectra exhibit that, as annealing time in air increases, the intensity of the newly found strong ultra-violet emission decreases while the green emission is increased. Raman spectrum and X-ray photoelectron spectroscopy investigations reveal that the relatively decreasing intensity was dominated by the increasing oxygen vacancy. Further calculation based on the SnO2 crystal lattices with H2O molecules at different steps in evaporation process was performed. The result of this calculation confirms that, rather than the influence of H2O molecules from air, the decreasing intensity is the result of the combined action of the formation of oxygen vacancy and the energetic oxygen compensation in annealing treatment.

2_1_8_13_800


icon graph This Abstract was viewed 2121 times | icon graph Article PDF downloaded 697 times

How to Cite
(1)
Zhu, Y.; Chen, Y.; Zhang, X. Study on the Annealing-Dependent Photoluminescence Properties of SnO2 Cluster-System Structures. Eur. J. Chem. 2011, 2, 8-13.

Article Details

Author Biography

Xinhua Zhang, School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, CN-230009, China


Share
Crossref - Scopus - Google - European PMC
References

[1]. Li, F.; Chen, L. Y.; Chen, Z. Q.; Xu, J. Q.; Zhu, J. M.; Xin, X. Q. Mater. Chem. Phys. 2002, 73, 335-338.
doi:10.1016/S0254-0584(01)00357-1

[2]. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Appl. Phys. Lett. 2002, 81, 1869-1871.
doi:10.1063/1.1504867

[3]. Kolmakov, A.; Zhang, Y. X.; Cheng, G. S.; Moskovits, M. Adv. Mater. 2003, 15, 997-1000.
doi:10.1002/adma.200304889

[4]. Arnold, M. S.; Avouris, P.; Pan, Z. W.; Wang, Z. L. J. Phys. Chem. B 2003, 107, 659-663.
doi:10.1021/jp0271054

[5]. Boyd, E. J.; Brown, S. A. Nanotechnology 2009, 20, 425201 (7 pp.).

[6]. Ferrere, S.; Zaban, A.; Gregg, B. A. J. Phys. Chem. B 1997, 101, 4490-4493.
doi:10.1021/jp970683d

[7]. Tatsuyama, C.; Ichimura, S. Jpn. J. Appl. Phys. 1976, 15, 843-847.
doi:10.1143/JJAP.15.843

[8]. Seo, H. W.; Han, C. S.; Hwang, S. O.; Park, J. Nanotechnology 2006, 17, 3388-3393.
doi:10.1088/0957-4484/17/14/008
PMid:19661580

[9]. Luo, S.; Fan, J.; Liu, W.; Zhang, M.; Song, Z.; Lin, C.; Wu, X.; Chu, P. Nanotechnology 2006, 17, 1695-1699.
doi:10.1088/0957-4484/17/6/025

[10]. Tang, Y.; Zhao, D. X.; Shen, D. Z.; Zhang, J. Y.; Wang, X. H. Nanotechnology 2009, 20, 495601 (6 pp.).

[11]. Kim, T. W.; Lee, D. U.; Yoon, Y. S. J. Appl. Phys. 2000, 88, 3759-3761.

[12]. Sun, S. H.; Meng, G. W.; Zhang, G. X.; Gao, T.; Geng, B. Y.; Zhang, L. D.; Zuo, J. Chem. Phys. Lett. 2003, 376, 103-107.
doi:10.1016/S0009-2614(03)00965-5

[13]. Gu, F.; Wang, S. F.; Song, C. F.; Lu, M. K.; Qi, Y. X.; Zhou, G. J.; Xu, D.; Yuan, D. R. Chem. Phys. Lett. 2003, 372, 451-454.
doi:10.1016/S0009-2614(03)00440-8

[14]. Prades, J. D. et al. Sensors and Actuators B 2007, 126, 6-12.
doi:10.1016/j.snb.2006.10.014

[15]. Kim, T.W. Mater. Res. Bull. 2001, 36, 349-353.
doi:10.1016/S0025-5408(01)00500-1

[16]. Maestre, D.; Cremades, A.; Piqueras, J. J. Appl. Phys. 2004, 95, 3027-3030.

[17]. Ma, J.; Wang, Y. H.; Ji, T. F.; Yu, X. H.; Ma, H. L. Mater. Lett. 2005, 59, 2142-2145.
doi:10.1016/j.matlet.2005.02.049

[18]. Gao, T.; Wang, T. H. Mater. Res. Bull. 2008, 43, 836-842.
doi:10.1016/j.materresbull.2007.05.004

[19]. Li, P. G.; Lei, M.; Tang, W. H.; Guo, X.; Wang, X. J. Alloy. Compd. 2009, 477, 515-518.
doi:10.1016/j.jallcom.2008.10.130

[20]. Mizokawa, Y.; Nakamura, S. Jpn. J. Appl. Phys. 1975, 14, 779-788.
doi:10.1143/JJAP.14.779

[21]. Zhou, J. X.; Zhang, M. S.; Hong, J. M.; Yin, Z. Solid State Commun. 2006, 138, 242-246.
doi:10.1016/j.ssc.2006.03.007

[22]. Wang, S. Solìd State Electronics, 1st edition, McGraw-Hill Book Co., 1966.

[23]. Jung, J.; Choi, S. P.; Chang, C. Solid State Commun. 2003, 127, 595-597.
doi:10.1016/S0038-1098(03)00614-8

[24]. Abello, L.; Bochu, B.; Gaskov, A.; Koudryavtseva, S.; Lucazeau, G.; Roumyantseva, M. J. Solid State Chem. 1998, 135, 78-85.
doi:10.1006/jssc.1997.7596

[25]. Zuo, J.; Xu, C.; Liu, X.; Wang, C.; Wang, C.; Hu, Y.; Qian, Y. J. Appl. Phys. 1994, 75, 1835-1836.

[26]. Diéguez, A.; Romano-Rodríguez, A.; Vilà, A.; Morante, J. R. J. Appl. Phys. 2001, 90, 1550-1557.

[27]. Liu, Y. K.; Zheng, C. L.; Wang, W. Z.; Yin, C. R.; Wang, G. H. Adv. Mater. 2001, 13, 1883-1887.
doi:10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-Q

[28]. Mcguire, K.; Pan, Z. W.; Wang, Z. L.; Milkie, D.; Menéndez, J.; Rao, A. M. J. Nanosci. Nanotech. 2002, 2, 499-502.
doi:10.1166/jnn.2002.129
PMid:12908287

[29]. Wang, J. X.; Lou, D. F.; Yan, X. Q.; Tuan, H. J.; Ci, L. J.; Zhou, Z. P.; Gao, Y.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Xie, S. S. Solid State Commun. 2004, 130, 89-94.
doi:10.1016/j.ssc.2004.01.003

[30]. Ye, J. D.; Gu, S. L.; Qin, F.; Zhu, S. M.; Liu, S. M.; Zhou, X.; Liu, W.; Hu, L. Q.; Zhang, R.; Shi, Y. Appl. Phys. A 2005, 81, 809-812.
doi:10.1007/s00339-004-2865-x

[31]. Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M. Phys. Status Solidi B 2004, 241, 616-619.
doi:10.1002/pssb.200304196

[32]. Coppa, B.; Davis, R. F.; Nemanich, R. J. Appl. Phys. Lett. 2003, 82, 400-402.
doi:10.1063/1.1536264

[33]. Li, S.; Zhang, X. Z.; Yan, B.; Yu, T. Nanotechnology 2009, 20, 495604 (9 pp.).

[34]. Cox, D. F.; Fryberger, T. B.; Semancik, S. Phys. Rev. B 1988, 38, 2072-2083.
doi:10.1103/PhysRevB.38.2072

[35]. Cox, D. F.; Fryberger, T. B.; Semancik, S. Surf. Sci. 1990, 227, L105-L108.
doi:10.1016/0039-6028(90)90380-Q

Supporting Agencies

This work was financially supported by the National Natural Science Foundation of China (NSFC, No.20671027).
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).