European Journal of Chemistry

Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry



Main Article Content

Mushtaq Jerri Meften

Abstract

To inhibit corrosion of the mild steel Q235 type in cooling water systems, two heterocyclic compounds were used, namely (3-(2-hydroxy-3-methoxyphenyl)-5-(4-nitrophenyl)-2-(4-((4-nitrophenyl)diazennyl)phenyl)dihydro-2H-pyrrolo[3,4-d]isoxazole-4,6(5H,6aH)-dione) (A1), and (5-(4-(1,3,5-dithiazinan-5-yl)phenyl)-5-pentyl-1,3,5-dithiazinan-5-ium (A2). They were experimentally evaluated by weight loss method at deference concentrations from 1×10-1 M to 1×10-5 M at 5 hours, and theoretically through thermodynamic functions, such as activation energy, standard free energy of adsorption, enthalpy of adsorption and entropy of adsorption. On the other hand, they were theoretically studied through quantum chemistry, such as quantum parameters including Highest occupied molecular orbital )HOMO( energy, Lowest unoccupied molecular orbital (LUMO) energy, energy gap, dipole moment, chemical potential, ΔEBack-donation, global hardness, global softness, global electrophilicity index, ionization potential, electro negativity and number of transferred electrons. The temperature effect on the corrosion rate has been studied at 25, 35, 45, 55 and 65 °C, and the adsorption for studied inhibitors on mild steel surface obeyed Langmuir adsorption isotherm. The methods of compounds preparation A1 and A2 are different from each other, A1 was prepared through several steps, and A2 through the domino reaction (by two step). The results indicate that the studied inhibitors exhibit good performance as an inhibitors for mild steel corrosion in cooling water systems, and inhibition efficiency increasing with increase inhibitors concentration and decreased with temperature rise.


icon graph This Abstract was viewed 2174 times | icon graph Article PDF downloaded 658 times

How to Cite
(1)
Meften, M. J. Preparation of Novel Compounds, Characterization and Studying Experimentally and Theoretically As Inhibitors through Thermodynamic and Quantum Chemistry. Eur. J. Chem. 2017, 8, 229-239.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Loutfy, H. M.; Elroby, S. K. Int. J. Ind. Chem. 2015, 6(3), 165-184.
https://doi.org/10.1007/s40090-015-0039-7

[2]. Hikmat, A. R. A. Engineering 2017, 9, 254-262.
https://doi.org/10.4236/eng.2017.93013

[3]. Al-Sabagh, A. M.; Notaila, M. N.; Ahmed, A. F.; Mohamed, A. M.; Abdelmonem, M. F. E.; Tahany, M. Egypt. J. Petroleum 2013, 22, 101-116.

[4]. Khaled, K. F.; Babic-Samardzija, K.; Hackerman, N. Electrochim. Acta 2005, 50, 2515-2520.
https://doi.org/10.1016/j.electacta.2004.10.079

[5]. Altsybiera, A. I.; Levin, S. Z.; Dorokhov, A. P., Third European Symposium of Corrosion Inhibitors, University of Ferrara, Ferrara, Italy, 1971.

[6]. Al-Sawaad, H. Z. M. J. Mater. Environ. Sci. 2011, 2(2), 128-147.

[7]. Granese, S. L. Corros. Sci. 1988, 44, 322-328.
https://doi.org/10.5006/1.3583944

[8]. Tadros, A. B.; Abdenaby, B. A. J. Electro. Chem. 1988, 246, 433-439.
https://doi.org/10.1016/0022-0728(88)80178-5

[9]. Bincy, J.; Abraham, J. Port. Electrochim. Acta 2011, 29(4), 253-271.
https://doi.org/10.4152/pea.201104253

[10]. Bentiss, F.; Lagrenee, M. J. Mater. Environ. Sci. 2011, 2(1), 13-17.

[11]. Elmsellem, H.; Karrouchi, K.; Aouniti, A.; Hammouti, B.; Radi, S.; Taoufik, J.; Ansar, M.; Dahmani, M.; Steli, H.; El Mahi, B. Der Pharma Chemica 2015, 7(10), 237-245.

[12]. Zarrok, H.; Oudda, H.; Zarrouk, A.; Salghi, R.; Hammouti, B.; Bouachrine, M. Der Pharma Chemica 2011, 3(6), 576-590.

[13]. Ehteram, A. N.; Aisha, H. Mater. Chem. Phys. 2008, 110, 145-154.
https://doi.org/10.1016/j.matchemphys.2008.01.028

[14]. Riggs, O. L. J.; Hurd, R. M. Corrosion 1967, 23, 252-259.
https://doi.org/10.5006/0010-9312-23.8.252

[15]. Durnie, W.; Marco, R. D.; Jefferson, A.; Kinsella, B. J. Electrochem. Soc. 1999, 146, 1751-1757.
https://doi.org/10.1149/1.1391837

[16]. Guo-Hao, C.; Jing-Mao, Z. Chem. Res. Chin. Univ. 2012, 28(4), 691-695.

[17]. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy, 3rd edition, Thomson Learning Inc, USA, 2001.

[18]. Macomber, R. S., A Complete Introduction to Modern NMR Spectroscopy, John Wiley & Sons, Inc., Canada, 1998.

[19]. Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds, 4th Edition, Germany, 2009.

[20]. Noor, K. M. K.; Adibatul, H. F.; Karimah, K.; Shadatul, H. R.; Mohd, S. M. Malays. J. Analy. Sci. 2014, 18(1), 21-27.

[21]. Saratha, R.; Vasudha, V. G. J. Chem. 2010, 7(3), 677-684.

[22]. Gupta, N. K.; Quraishi, M. A.; Singh, P.; Srivastava, V.; Srivastava, K.; Verma, C.; Mukherjee, A. K. Anal. Bioanal. Electrochem. 2017, 9(2), 245-265.

[23]. Nwabanne, J. T.; Okafor, V. N. J. Emerging Trends Eng. Appl. Sci. 2011, 2(4), 619-625.

[24]. Ghazoui, A.; Saddik, R.; Benchat, N.; Guenbour, M.; Hammouti, B.; Al-Deyab, S. S.; Zarrouk, A. Int. J. Electrochem. Sci. 2012, 7, 7080-7097.

[25]. Obi-Egbedi, N. O.; Obot, I. B. Arab. J. Chem. 2013, 6, 211-223.
https://doi.org/10.1016/j.arabjc.2010.10.004

[26]. Xiang-Hong, L.; Xiao-Guang, X. Acta Phys. Chim. Sin. 2013, 29(10), 2221-2231.

[27]. Awe, F. E.; Idris, S. O.; Abdulwahab, M.; Oguzie, E. E. Mater. Chem. 2015, 1, 111-118.

[28]. Ayssar, N.; Abu-Abdoun, I.; Abdel-Rahman, I.; Al-Khayat, M. Int. J. Corros. 2010, ID: 460154, 1-9.

[29]. Yadav, M.; Kumar, S.; Purkait, T.; Olasunkanmi, L. O.; Bahadur, I.; Ebenso, E. E. J. Mol. Liq. 2016, 213, 122-138.
https://doi.org/10.1016/j.molliq.2015.11.018

[30]. Amin, M. A.; Abd El-Rehim, S. S.; El-Sherbini, E. E. F.; Bayoumi, R. S. Int. J. Electrochem. Sci. 2008, 3, 199-215.

[31]. Al-Juaid, S. S. J. Port. Electrochim. Acta 2007, 25, 363-373.
https://doi.org/10.4152/pea.200703363

[32]. El-Khattabi, O.; Zerga, B.; Sfaira, M.; Taleb, M.; Ebn Touhami, M.; Hammouti, B.; Herrag, L.; Mcharfi, M. Der Pharma Chemica 2012, 4(4), 1759-1768.

[33]. Sudhish, K. S.; Ashish, K. S.; Quraishi, M. A. Int. J. Electrochem. Sci. 2011, 6, 5779-5791.

[34]. Ashish, K. S.; Quraishi, M. A. Int. J. Electrochem. Sci. 2012, 7, 3222-3241.

[35]. Pournazari, S.; Moayed, M. H.; Rahimizadeh, M. J. Corros. Sci. 2013, 71, 20-31.
https://doi.org/10.1016/j.corsci.2013.01.019

[36]. Eddy, N. O.; Odoemelam, S. A.; Odiongenyi, A. O. Adv. Natural Appl. Sci. 2008, 2(1), 35-42.

[37]. Szyprowski, A. J. J. Corros. 2003, 59(1), 68-81.
https://doi.org/10.5006/1.3277538

[38]. Mobin, M.; Masroor, S. Int. J. Electrochem. Sci. 2012, 7, 6920-6940.

[39]. Dahmani, M.; Et-Touhami, A.; Al-Deyab, S. S.; Hammouti, B.; Bouyanzer, A. Int. J. Electrochem. Sci. 2010, 5, 1060-1069.

[40]. Fouda, A. S.; Al-Sarawy, A. A.; El-Katori, E. E. Desalination 2006, 201, 1-13.
https://doi.org/10.1016/j.desal.2006.03.519

[41]. Boukalah, M.; Hammouti, B.; Lagrenee, M.; Bentiss, F. Corros. Sci. 2006, 48, 2831-2837.
https://doi.org/10.1016/j.corsci.2005.08.019

[42]. Khadom, A. A.; Yaro, A. S.; Aitaie, A. S.; Kadum, A. A. H. Port. Electrochim. Acta 2009, 27(6), 699-712.
https://doi.org/10.4152/pea.200906699

[43]. Ebenso, E. E.; Alemu, H.; Umoren, S. A.; Obot, I. B. Int. J. Electrochem. Sci. 2008, 3, 1325-1339.

[44]. Guan, N.; Xueming, L.; Fei, L. Mater. Chem. Phys. 2004, 86, 59-68.
https://doi.org/10.1016/j.matchemphys.2004.01.041

[45]. Muthukrishnan, P.; Jeyaprabha, B.; Prakash, P. Int. J. Indus. Chem. 2014, 5(4), 1-11.

[46]. Saratha, R.; Priya, S. V.; Thilagavathy, P. Eur. J. Chem. 2009, 6(3), 785-789.

[47]. Fouda, A. S.; Elewady, G. Y.; Shalabi, K.; Habbouba, S. J. Mater. Environ. Sci. 2014, 5(3), 767-778.

[48]. Lahmidi, S.; Elyoussfi, A.; Dafali, A.; Elmsellem, H.; Sebbar, N. K.; El Ouasif, L.; Jilalat, A. E.; El-Mahi, B.; Essassi, E. M.; Abdel-Rahman, I.; Hammouti, B. J. Mater. Environ. Sci. 2017, 8 (1), 225-237.

[49]. Lutendo, C. M.; Mwadham, M. K.; Eno, E. E. J. Mol. Liq. 2016, 215, 763-779.
https://doi.org/10.1016/j.molliq.2015.12.095

[50]. Adardour, L.; Lgaz, H.; Salghi, R.; Larouj, M.; Jodeh, S.; Zougagh, M.; Hamed, O.; Taleb, M. Der Pharm. Lett. 2016, 8 (4), 173-185.

[51]. Adejoro, I. A; Ibeji, C. U; Akintayo, D. C. Chem. Sci. 2017, 8(1), 1-6.
https://doi.org/10.1039/C7SC90001E

[52]. Junaedi, S.; Al-Amiery, A. A.; Kadihum, A.; Kadhum, A. H.; Mohamad, Abu Bakar Int. J. Mol. Sci. 2013, 14, 11915-11928.
https://doi.org/10.3390/ijms140611915

[53]. Elazhary, I.; Ben, H.; Laamari, M. R.; El- Haddad, M.; Rafqah, S.; Anane, H.; Moubtassim, M. L. E.; Stiriba, S. E. J. Mater. Environ. Sci. 2016, 7(4), 1252-1266.

[54]. Udhayakalaa, P.; Rajendiranb, T. V.; Gunasekaranc, S. J. Adv. Sci. Res. 2012, 3(2), 71-77.

[55]. Raja, K.; Senthilkumar, A. N.; Tharini, K. Adv in Appl. Sci. Res. 2016, 7(2), 150-154.

[56]. Nirmala, B.; Manjula, P. Int. J. Inno. Sci. Res. 2016, 5(3), 3977-3985.

[57]. Paulin, M. N.; Drissa, S.; Albert, T.; Assemian, Y.; Henri, K. A.; Donourou, D. J. Soc. Ouest-Afr. Chim. 2010, 30, 49-58.

[58]. John, S.; Joseph, A. Mater. Chem. Phys. 2012, 133, 1083-1089.
https://doi.org/10.1016/j.matchemphys.2012.02.020

[59]. Junaedi, S.; Kadhum, A. H.; Al-Amiery, A. A.; Mohamad, A.; Takriff, M. S. Int. J. Electrochem. Sci. 2012, 7, 3543-3554.

[60]. Nnenna, W. O.; Jonathan, O. B.; Ekemini, B. I.; Abiodun, O. E. American J. Phys. Chem. 2015, 4, 1-9.

[61]. Cherrak, K.; Dafali, A.; Elyoussfi, A.; El Ouadi, Y.; Sebba, N. K; El Azzouzi, M.; Elmsellem, H.; Essassi, E. M.; Zarrouk, A. J. ater. Environ. Sci. 2017, 8(2), 636-647.

[62]. Qian, Z.; Tiantian, T.; Peilin, D.; Zhiyi, Z.; Fang, W. Metals 2017, 7(44), 1-11.

[63]. Nithya, P.; Rameshkumar, S.; Sankar, A. Chem. Sci. Rev. Lett. 2017, 6(21), 20-30.

Supporting Agencies

The Research Department and Quality Control, South Oil Company, Basrah, The Polymer Researches Center, Basrah University, Iraq.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).