European Journal of Chemistry

Determination of optimal adsorption-desorption conditions for selective removal of Ni(II) from petrochemical samples using ion imprinted nanosorbent

Crossmark


Main Article Content

Azizallah Nezhadali
Maryam Pirouzmand
Mahmood Payehghadr

Abstract

Nanoporous particles Ni(II) ion imprinted polymer (IIP), and non-imprinted polymer (NIP) in the absence of Ni(II) ion, with 18-70 nm dimensions were synthesized, and characterized by Fourier transform infrared, energy dispersive X-ray and nuclear magnetic resonance spectroscopic methods. Then, the surface area, pore size and structural composition of the products were characterized by Brunauer-Emmett-Teller and scanning electron microscope methods. Then, modified electrodes by the IIP for Ni(II) sensing and determination, were constructed and their catalytic activity were investigated by cyclic voltammetric method. Some parameters like desorption solvent, amount of sorbent, pH and contact time were optimized, and the measurements were all conducted under optimal conditions. The optimum pH for maximum sorption was obtained 7.8. In the optimum conditions, the maximum sorbent capacity of the IIP was obtained 371.9 µM/g. The limit of detection and relative standard deviation (n = 5) were obtained 1.3 ng/mLand 1.47%, respectively. The pre-concentration procedure revealed a linear curve within the concentration range of 10-6000 ng/mL and a good linearity with squared correlation coefficient of r2 0.9991 was achieved. The method was applied successfully for determination of Ni(II) ion in petrochemical samples.


icon graph This Abstract was viewed 1510 times | icon graph Article PDF downloaded 795 times

How to Cite
(1)
Nezhadali, A.; Pirouzmand, M.; Payehghadr, M. Determination of Optimal Adsorption-Desorption Conditions for Selective Removal of Ni(II) from Petrochemical Samples Using Ion Imprinted Nanosorbent. Eur. J. Chem. 2018, 9, 57-62.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Panahi, A. H.; Zadeh, S. M.; Tavangari, S. Iran. J. Chem. Chem. Eng. 2012, 31, 35-44.

[2]. Israel, A. U.; Obot, I. B.; Umoren, S. A.; Mkpenie, V. Ebong, G. A. Chem. 2008, 5, 74-80.

[3]. Uzoekwe, S. A.; Oghosanine, F. A. Environ. Stud. Manage. 2011, 4, 107-116.

[4]. Booth, E.; Strickland, J. D. H. Am. Chem. Soc. 1953, 75, 3017-3019.
https://doi.org/10.1021/ja01108a504

[5]. Yonezawa, C.; Sagawa, T.; Hoshi, M.; Tachikawa, E. Radioanal. Chem. 1983, 78, 7-14.
https://doi.org/10.1007/BF02519744

[6]. Gazda, D. B.; Fritz, J. S.; Porter, M. D. Anal. Chim. Acta 2004, 508, 53-59.
https://doi.org/10.1016/j.aca.2003.11.044

[7]. Ali, A.; Ye, Y.; Xu, G.; Yin, X.; Zhang, T. Microchem. 1999, 63, 365-373.
https://doi.org/10.1006/mchj.1999.1799

[8]. Sabermahani, F.; Taher, M. A. Microchim. Acta 2007, 159, 117-123.
https://doi.org/10.1007/s00604-006-0729-0

[9]. Tuzen, M.; Saygi, K. O.; Soylak, M. J. Hazard. Mater. 2008, 152, 632-639.
https://doi.org/10.1016/j.jhazmat.2007.07.026

[10]. Koesmawatig, T. A.; Moelyo, M.; Rizqiani, A.; Tanuwidjaja, S. Earth. Environ. Sci. 2017, 60, 1-6.

[11]. Godlewska-Zylkiewicz, B.; Malejko, J.; Halaburda, P.; Lesniewska, B.; Kojlo, A. Microchem. J. 2007, 85, 314-320.
https://doi.org/10.1016/j.microc.2006.07.008

[12]. Jackson, L. S.; Spence, J.; Janssen, D. J.; Ross, A. R. S.; Cullen, J. T. J. Anal. Spectro. 2018, 33, 304-313.
https://doi.org/10.1039/C7JA00237H

[13]. Rajesh, N.; Deepthi, B.; Subramaniam, A. J. Hazard. Mater. 2006, 144, 464-469.
https://doi.org/10.1016/j.jhazmat.2006.10.059

[14]. Habila, A. M.; Othman, Z.; Yilmaz, E.; Soylak, M. J. Environ. Anal. Chem. 2018, 98, 171-181.
https://doi.org/10.1080/03067319.2018.1430794

[15]. Afkhami, A.; Moradi, M.; Bahiraei, A.; Madrakian, T. Anal. Bioanal. Chem. Res. 2018, 5, 41-53.

[16]. Garcia, R.; Pinel, C.; Madic, C.; Lemaire, M. Tetrahedron Lett. 1998, 39, 8651-8654.
https://doi.org/10.1016/S0040-4039(98)01970-4

[17]. Nishide, H.; Tsuchida, E. Makromol. Chem. 1976, 177, 2295-2310.
https://doi.org/10.1002/macp.1976.021770807

[18]. Shamsipur, M.; Besharati-Seidani, A.; Fasihi, J.; Sharghi, H. Talanta 2010, 83, 674-681.
https://doi.org/10.1016/j.talanta.2010.10.021

[19]. Arbab-Zavar, M. H.; Chamsaz, M.; Zohuri, G.; Darroudi, A. J. Hazard. Mater. 2011, 185, 38-43.
https://doi.org/10.1016/j.jhazmat.2010.08.093

[20]. Ebrahimzadeh, H.; Moazzen, E.; Amini, M. M.; Sadeghi, O. Anal. Methods 2012, 4, 3232-3237.
https://doi.org/10.1039/c2ay25407g

[21]. Ahmadi, E.; Gatabi, J.; Mohamadnia, Z. Polimeros 2016, 26, 242-248.
https://doi.org/10.1590/0104-1428.2322

[22]. Omidi, F.; Behbahani, M.; Sadeghi Abandansar, H.; Sedighi, A.; Shahtaheri, S. J. J. Environ. Health Sci. Eng. 2014, 12, 137-141.
https://doi.org/10.1186/s40201-014-0137-z

[23]. Alahi, M. E. E.; Mukhopad, S. C.; Burkitt, L Sens. Actuators B 2018, 259, 753-761.
https://doi.org/10.1016/j.snb.2017.12.104

[24]. Bai, H.; Xiong, C.; Wang, C.; Liu, P.; Dong, S.; Cao, Q. J. Nanosci. Nanotechnol. 2018, 18, 3577-3584.
https://doi.org/10.1166/jnn.2018.14667

[25]. Alizadeh, T.; Atayi, K. J. Mol. Recognit. 2018, 31, 1-9.
https://doi.org/10.1002/jmr.2678

[26]. Behbahani, M.; Taghizadeh, M.; Bagheri, A.; Hosseini, H.; Salarnian, M.; Tootoonchi, A. Microchim. Acta 2012, 178, 429-437.
https://doi.org/10.1007/s00604-012-0846-x

[27]. Sarabadani, P.; Sadeghi, M.; Payehghadr, M.; Eshaghi, Z. Anal. Met. 2014, 6, 741-749.
https://doi.org/10.1039/C3AY41611A

[28]. Nourifard, F.; Payehghadr, M.; Kalhor, M.; Nejadali. A. Electroanalysis 2015, 27, 1-8.

[29]. Yang, J.; Dukjoon, K. Ind. Eng. Chem. Res. 2014, 53, 13340-13347.
https://doi.org/10.1021/ie500887b

[30]. Romani, J. O.; Pineiro, A. M.; Barrera, P. B.; Esteban, A. M. Talanta 2009, 79, 723-729.
https://doi.org/10.1016/j.talanta.2009.04.066

[31]. Romani, J. O.; Pineiro, A. M.; Barrera, P. B.; Esteban, A. M. Microchem. 2009, 93, 225-231.
https://doi.org/10.1016/j.microc.2009.07.011

[32]. Sousa, C. S. D.; Korn, M. Anal. Chim. Acta 2001, 444, 309-315.
https://doi.org/10.1016/S0003-2670(01)01207-7

[33]. Jiang, N.; Chang, X.; Zheng, H.; He, Q.; Hu, Z. Anal. Chim. Acta 2006, 577, 225-231.
https://doi.org/10.1016/j.aca.2006.06.049

[34]. Saraji, M.; Yousefi, H. J. Hazard. Mater. 2009, 167, 1152-1157.
https://doi.org/10.1016/j.jhazmat.2009.01.111

[35]. Yavuz, O.; Altunkaynak, Y.; Guzel, F. Water Res. 2003, 37, 948-952.
https://doi.org/10.1016/S0043-1354(02)00409-8

[36]. Otero-Romani, J.; Moreda-Pineiro, A.; Bermejo-Barrera, P.; Martin-Esteban, A. Anal. Chim. Acta 2008, 630, 1-9.
https://doi.org/10.1016/j.aca.2008.09.049

[37]. Ersoz, A.; Say, R.; Denizli, A. Anal. Chim. Acta 2004, 502, 91-97.
https://doi.org/10.1016/j.aca.2003.09.059

[38]. Xuejun, W.; Zhenliang, X.; Naici, B.; Zuoguo, Y. Chin. J. Chem. Eng. 2007, 15, 595-599.
https://doi.org/10.1016/S1004-9541(07)60130-X

Supporting Agencies

Payame Noor University and Kharazmi Technology Development of Iran, Iran
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).