

Application of Hammett equation to intramolecular hydrogen bond strength in para-substituted phenyl ring of trifluorobenzoylacetone and 1-aryl-1,3-diketone malonates
Vahidreza Darugar (1)





(1) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(2) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(3) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(4) Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
(5) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
(*) Corresponding Author
Received: 13 Apr 2018 | Revised: 29 May 2018 | Accepted: 02 Jun 2018 | Published: 30 Sep 2018 | Issue Date: September 2018
Abstract
The stability of two stable cis-enol forms in two categories of β-diketones, including para-substituted of trifluorobenzoylacetone (X-TFBA) and 1-aryl-1,3-diketone malonates (X-ADM, X: H, NO2, OCH3, CH3, OH, CF3, F, Cl, and NH2) has been obtained by different theoretical methods. According to our results, the energy difference between the mentioned stable chelated enol forms for the titled compounds is negligible. The theoretical equilibrium constants between the two stable cis-enol of the mentioned molecules are in excellent agreement with the reported experimental equilibrium constant. In addition, the effect of different substitutions on the intramolecular hydrogen bond strength has been evaluated. The correlation between Hammett para-substituent constants, σp. with the theoretical and experimental parameters related to the strength of hydrogen bond in p-X-TFBA and p-X-ADM molecules also investigated by means of density functional theory calculations. The electronic effects of para-substitutions on the intramolecular hydrogen bond strength were determined by NMR and IR data related to intramolecular hydrogen bond strength, geometry, natural bond orbital results, and topological parameters. These parameters were correlated with the Hammett para-substituent constants, σp. Good linear correlations between σp and the several parameters related to the hydrogen bond strength, in this study were obtained.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.9.3.213-221.1713
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
The University of Ferdowsi, Project no: 42453, Mashhad, Iran.
Citations
[1]. Mohammad Suhail, Sofi Danish Mukhtar, Imran Ali, Ariba Ansari, Saiyam Arora
Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective
European Journal of Chemistry 11(2), 139, 2020
DOI: 10.5155/eurjchem.11.2.139-144.1975

[2]. Mohd. Suhail
The Target Determination and the Mechanism of Action of Chiral-Antimalarial Drugs: A Docking Approach
Journal of Computational Biophysics and Chemistry 20(05), 501, 2021
DOI: 10.1142/S2737416521500290

[3]. Mohd. Suhail
A Computational and Literature-Based Evaluation for a Combination of Chiral Anti-CoV Drugs to Block and Eliminate SARS-CoV-2 Safely
Journal of Computational Biophysics and Chemistry 20(04), 417, 2021
DOI: 10.1142/S2737416521500228

References
[1]. Huggins M.; Thesis, University of California, 1919.
[2]. Fuster, F.; Grabowski, S. J. J. Phys. Chem. A 2011, 115, 10078-10086.
https://doi.org/10.1021/jp2056859
[3]. Lopes Jesus, A. J.; Redinha, J. S. J. Phys. Chem. A 2011, 115, 14069-14077.
https://doi.org/10.1021/jp206193a
[4]. Zahedi-Tabrizi, M.; Farahati, R. Comp. Theor. Chem. 2011, 977, 195-200.
https://doi.org/10.1016/j.comptc.2011.09.034
[5]. Bende, A. Theor. Chem. Acc. 2010, 125, 253-268.
https://doi.org/10.1007/s00214-009-0645-6
[6]. Vakili, M.; Tayyari, S. F.; Kanaani, A.; Nekoei, A. R.; Salemi, S.; Miremad, H.; Berenji, A. R.; Sammelson, R. E. J. Mol. Struct. 2011, 998, 99-109.
https://doi.org/10.1016/j.molstruc.2011.04.045
[7]. Vakili, M.; Nekoei, A. R.; Tayyari, S. F.; Kanaani, A.; Sanati, N. J. Mol. Struct. 2012, 1021, 102-111.
https://doi.org/10.1016/j.molstruc.2012.04.009
[8]. Berenji, A. R.; Tayyari, S. F.; Rahimizadeh, M.; Eshghi, H.; Vakili, M.; Shiri, A. Spectrochim. Acta A 2013, 102, 350-357.
https://doi.org/10.1016/j.saa.2012.10.042
[9]. Gilli, G.; Gilli, P. The nature of hydrogen bond, Oxford: Oxford University Press, 2009.
https://doi.org/10.1093/acprof:oso/9780199558964.001.0001
[10]. Gilli, G.; Belluci, F.; Ferreti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023-1028.
https://doi.org/10.1021/ja00185a035
[11]. Bertolasi, V.; Gilli, P.; Ferreti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917-4925.
https://doi.org/10.1021/ja00013a030
[12]. Gilli, P.; Bertolasi, V.; Ferreti, V.; Gilli, G. J. Am. Chem. Soc. 1994, 116, 909-915.
https://doi.org/10.1021/ja00082a011
[13]. Tayyari, S. F.; Najafi, A.; Emamian, S.; Afzali, R.; Wang, Y. A. J. Mol. Struct. 2008, 878, 10-21.
https://doi.org/10.1016/j.molstruc.2007.07.040
[14]. Zahedi-Tabrizi, M.; Tayyari, F.; Moosavi-Tekyeh, Z.; Jalali, A.; Tayyari, S. F. Spectrochim. Acta A 2006, 65, 387-396.
https://doi.org/10.1016/j.saa.2005.11.019
[15]. Tayyari, S. F.; Milani-Nejad, F.; Rahemi, H. Spectrochim. Acta A 2002, 58, 1669-1679.
https://doi.org/10.1016/S1386-1425(01)00619-9
[16]. Darugar, V. R.; Vakili, M.; Nekoei, A. R.; Tayyari, S. F.; Afzali. R. J. Mol. Struct. 2017, 1150, 427-437.
https://doi.org/10.1016/j.molstruc.2017.09.004
[17]. Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry, 2nd Ed.; Wiley-Interscience Publishers, 2003, 8, 253-268.
[18]. Jaffe, H. H. Chem. Rev. 1953, 53(2), 191-261.
https://doi.org/10.1021/cr60165a003
[19]. Yingst, A.; Mcdaniel, D. H. J. Inorg. Nucl. Chem. 1966, 28, 2919-2929.
https://doi.org/10.1016/0022-1902(66)80018-0
[20]. May, W. R.; Jones, M. M. J. Inorg. Nucl. Chem. 1962, 24, 511-517.
https://doi.org/10.1016/0022-1902(62)80237-1
[21]. Jimenez-Cruz, F. J.; Olivares, H. R.; Gutierrez, J. L.; Fragoza, M. L. J. Mol. Struc. 2015, 1101, 162-169.
https://doi.org/10.1016/j.molstruc.2015.08.022
[22]. Jimenez-Cruz, F. J.; Mar, L. F.; Gutierrez, J. L. J. Mol. Struc. 2013, 1034, 43-50.
https://doi.org/10.1016/j.molstruc.2012.09.010
[23]. Darugar, V. R.; Vakili, M.; Tayyari, S. F.; Eshghi, H.; Afzali, R. Orient. J. Chem. 2017, 5, 2579-2590.
https://doi.org/10.13005/ojc/330555
[24]. Bader, R. W. F.; Atoms in Molecules, A Quantum Theory, Oxford University Press, New York, 1990.
[25]. Emamian, S. R.; Tayyari, S. F. J. Chem. Sci. 2013, 125, 939-948.
https://doi.org/10.1007/s12039-013-0466-y
[26]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.; Gaussian 09, Revision A. 02, Wallingford CT, 2009.
[27]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913
[28]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[29]. Muller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.
https://doi.org/10.1103/PhysRev.46.618
[30]. Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275-280.
https://doi.org/10.1016/0009-2614(90)80029-D
[31]. Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401-146404.
https://doi.org/10.1103/PhysRevLett.91.146401
[32]. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027-2094.
https://doi.org/10.1021/cr00031a013
[33]. Biegler-König, F.; Schönbohm, J. J. Comput. Chem. 2002, 23, 1489-1494.
https://doi.org/10.1002/jcc.10085
[34]. Bader, R. F. W.; Tang, Y. H.; Tal, Y.; Biegler-König, F. W. J. Am. Chem. Soc. 1982, 104, 946-952.
https://doi.org/10.1021/ja00368a004
[35]. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. Theor. Chem. Inst.; University of Wisconsin, Madison, WI, 2001.
[36]. McWeeny, R. Phys. Rev. 1962, 126, 1028-1034.
https://doi.org/10.1103/PhysRev.126.1028
[37]. London, F. J. Phys. Radium 1937, 8, 397-409.
https://doi.org/10.1051/jphysrad:01937008010039700
[38]. Afzali, R.; Vakili, M.; Tayyari, S. F.; Eshghi, H.; Nekoei, A. R. Spectrochim. Acta A 2014, 117, 284-298.
https://doi.org/10.1016/j.saa.2013.08.032
[39]. Tayyari, S. F.; Vakili, M.; Nekoei, A. R.; Rahemi, H.; Wang, Y. A. Spectrochim. Acta A 2007, 66, 626-636.
https://doi.org/10.1016/j.saa.2006.04.002
[40]. Sloop, J. C.; Bumgardner, C. L.; Washington, G.; Loehle, W. D.; Sankar, S. S.; Lewis, A. B. J. Fluorine Chem. 2006, 127, 780-786.
https://doi.org/10.1016/j.jfluchem.2006.02.012
[41]. Lopes, A. J.; Redinha, J. S. J. Phys. Chem. A 2011, 115, 14069-14077.
https://doi.org/10.1021/jp110705c
[42]. Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170-173.
https://doi.org/10.1016/S0009-2614(98)00036-0
[43]. Afzali, R.; Vakili, M.; Nekoei, A. R.; Tayyari, S. F. J. Mol. Struct. 2014, 1076, 262-271.
https://doi.org/10.1016/j.molstruc.2014.07.059
[44]. Vakili, M.; Tayyari, S. F.; Nekoei, A. R.; Miremad, H.; Salemi, S.; Sammelson, R. E. J. Mol. Struct. 2010, 970, 160-170
https://doi.org/10.1016/j.molstruc.2010.02.072
[45]. Tayyari, S. F.; Emampour, J. S.; Vakili, M.; Nekoei, A. R.; Eshghi, H.; Salemi, S.; Hassanpour, M. J. Mol. Struct. 2006, 794, 204-214.
https://doi.org/10.1016/j.molstruc.2006.02.011
[46]. Cotman, A. E.; Cahard, D.; Mohar, B. Angew. Chem. 2016, 55, 5294-5298.
https://doi.org/10.1002/anie.201600812
[47]. Buttner, S.; Riahi, A.; Hussain, I.; Yawer, M. A.; Lubbe, M.; Villinger, A.; Reinke, H.; Fischer, C.; Langer, P. Tetrahedron 2009, 65, 2124-2135.
https://doi.org/10.1016/j.tet.2008.12.076
[48]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
https://doi.org/10.1021/cr00088a005
[49]. Wiberg, K. W. Tetrahedron 1968, 24, 1083-1096.
https://doi.org/10.1016/0040-4020(68)88057-3
[50]. Raj, R. K.; Gunasekaran, S.; Gnanasambandan, T.; Seshadri, S. Spectrochim. Acta A 2015, 139, 505-514.
https://doi.org/10.1016/j.saa.2014.12.024
[51]. Kosar, B.; Albayrak, C. Spectrochim. Acta A 2011, 87, 160-167.
https://doi.org/10.1016/j.saa.2010.09.016
[52]. Kanaani, A.; Ajloo, D.; Kiyani, H.; Ghasemian, H.; Vakili, M.; Feizabadi, M. Mol. Phys. 2016, 114, 2081-2097.
https://doi.org/10.1080/00268976.2016.1178822
[53]. Kanaani, A.; Ajloo, D.; Kiyani, H.; Ghasemian, H.; Vakili, M.; Mosallanezhad, A. Struct. Chem. 2015, 26, 1095-1113.
https://doi.org/10.1007/s11224-015-0571-2
[54]. Akman, F. Can. J. Phys. 2016, 94, 583-593.
https://doi.org/10.1139/cjp-2016-0041
[55]. Esmaeili, B.; Beyramabadi, S. A.; Sanavi-khoshnood, R.; Morsali, A. Orient. J. Chem. 2015, 31(4), 2129-2135.
https://doi.org/10.13005/ojc/310434
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.9.3.213-221.1713

















European Journal of Chemistry 2018, 9(3), 213-221 | doi: https://doi.org/10.5155/eurjchem.9.3.213-221.1713 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.