European Journal of Chemistry

Microwave assisted one pot conversion of aromatic aldehydes to nitriles

Crossmark


Main Article Content

Yousef Mohammad Hijji
Rajeesha Rajan
Hani Darwish Tabba
Imad Ali Abu-Yousef
Said Mansour
Hamdi Ben Yahia

Abstract

Nitriles are versatile organic precursors in organic synthesis and have numerous applications. An efficient microwave assisted method for conversion of aromatic aldehydes to the corresponding nitriles is reported. Aldehydes are readily converted to oxime followed by acetylation and acetic acid elimination to provide nitriles in good yields within minutes. The method proved to be efficient for the synthesis of aromatic and heterocyclic nitriles. The reaction proceeds smoothly by microwave at 150 °C for 5 minutes. The obtained products are isolated simply by filtration or extraction.


icon graph This Abstract was viewed 2805 times | icon graph Article PDF downloaded 883 times icon graph Article SUPPLEMENTARY FILE downloaded 0 times

How to Cite
(1)
Hijji, Y. M.; Rajan, R.; Tabba, H. D.; Abu-Yousef, I. A.; Mansour, S.; Yahia, H. B. Microwave Assisted One Pot Conversion of Aromatic Aldehydes to Nitriles. Eur. J. Chem. 2018, 9, 269-274.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53(22), 7902-7917.
https://doi.org/10.1021/jm100762r

[2]. Murali Dhar, T. G.; Shen, Z.; Gu, H. H.; Chen, P.; Norris, D.; Watterson, S. H.; Ballentine, S. K.; Fleener, C. A.; Rouleau, K. A.; Barrish, J. C.; Townsend, R.; Hollenbaugh, D. L.; Iwanowicz, E. J. Bioorg. Med. Chem. Lett. 2003, 13(20), 3557-3560.
https://doi.org/10.1016/S0960-894X(03)00757-1

[3]. Arote, N. D.; Bhalerao, D. S.; Akamanchi, K. G. Tetrahedron Lett. 2007, 48(21), 3651-3653.
https://doi.org/10.1016/j.tetlet.2007.03.137

[4]. Bajpai, A. R.; Deshpande, A. B.; Samant, S. D. Synth. Commun. 2000, 30(15), 2785-2791.
https://doi.org/10.1080/00397910008086903

[5]. Ballini, R.; Fiorini, D.; Palmieri, A. Synlett. 2003, 12, 1841-1843.
https://doi.org/10.1055/s-2003-41408

[6]. Boruah, M.; Konwar, D. J. Org. Chem. 2002, 67(20), 7138-7139.
https://doi.org/10.1021/jo020005+

[7]. Chakraborti, A. K.; Kaur, G. Tetrahedron 1999, 55(46), 13265-13268.
https://doi.org/10.1016/S0040-4020(99)00816-9

[8]. Elmorsy, S. S.; El-Ahl, A. S.; Soliman, H.; Amer, F. A. Tetrahedron Lett. 1995, 36(15), 2639-2640.
https://doi.org/10.1016/0040-4039(95)00302-S

[9]. Hegedues, A.; Cwik, A.; Hell, Z.; Horvath, Z.; Esek, A.; Uzsoki, M. Green Chem. 2002, 4(6), 618-620.
https://doi.org/10.1039/B207273B

[10]. Khezri, S. H.; Azimi, N.; Mohammed-Vali, M.; Eftekhari-Sis, B.; Hashemi, M. M.; Baniasadi, M. H.; Teimouri, F. Arkivoc 2007, 15, 162-170.

[11]. Meshram, H. M. Synthesis 1992, 10, 943-944.
https://doi.org/10.1055/s-1992-26271

[12]. Niknam, K.; Karami, B.; Kiasat, A. R. Bull. Korean Chem. Soc. 2005, 26(6), 975-978.
https://doi.org/10.5012/bkcs.2005.26.6.975

[13]. Sharghi, H.; Saravi, M. H. J. Iran Chem. Soc. 2004, 1(1), 28-32.
https://doi.org/10.1007/BF03245767

[14]. Sharghi, H.; Sarvari, M. H. Tetrahedron 2002, 58(52), 10323-10328.
https://doi.org/10.1016/S0040-4020(02)01417-5

[15]. Sharghi, H.; Sarvari, M. H. Synthesis 2003, 2, 243-246.
https://doi.org/10.1055/s-2003-36830

[16]. Sundermeier, M.; Zapf, A.; Beller, M. Eur. J. Inorg. Chem. 2003, 19, 3513-3526.
https://doi.org/10.1002/ejic.200300162

[17]. Yang, S. H.; Chang, S. Org. Lett. 2001, 3(26), 4209-4211.
https://doi.org/10.1021/ol0168768

[18]. Kelly, C. B.; Lambert, K. M.; Mercadante, M. A.; Ovian, J. M.; Bailey, W. F.; Leadbeater, N. E. Angew. Chem. Int. Ed. 2015, 54(14), 4241-4245.
https://doi.org/10.1002/anie.201412256

[19]. Quinn, D. J.; Haun, G. J.; Moura-Letts, G. Tetrahedron Lett. 2016, 57(34), 3844-3847.
https://doi.org/10.1016/j.tetlet.2016.07.047

[20]. Laulhe, S.; Gori, S. S.; Nantz, M. H. J. Org. Chem. 2012, 77(20), 9334-9337.
https://doi.org/10.1021/jo301133y

[21]. Ghosh, P.; Saha, B.; Pariyar, G. C.; Tamang, A.; Subba, R. Tetrahedron Lett. 2016, 57(32), 3618-3621.
https://doi.org/10.1016/j.tetlet.2016.06.125

[22]. Das, V. K.; Harsh, S. N.; Karak, N. Tetrahedron Lett. 2016, 57(5), 549-553.
https://doi.org/10.1016/j.tetlet.2015.12.083

[23]. Gu, L.; Jin, C.; Zhang, H.; Liu, J.; Li, G.; Yang, Z. Org. Biomol. Chem. 2016, 14(28), 6687-6690.
https://doi.org/10.1039/C6OB01269H

[24]. Hyodo, K.; Kitagawa, S.; Yamazaki, M.; Uchida, K. Chem. Asian J. 2016, 11(9), 1348-1352.
https://doi.org/10.1002/asia.201600085

[25]. Hoz, A.; Loupy, A. Microwaves in Organic Synthesis, Volume 1, Third Edition, Wiley-VCH Verlag GmbH & Co. KGaA, pp 605, 2012

[26]. Bose, D. S.; Narsaiah, A. V. Tetrahedron Lett. 1998, 39(36), 6533-6534.
https://doi.org/10.1016/S0040-4039(98)01358-6

[27]. Das, B.; Madhusudhan, P.; Venkataiah, B. Synlett. 1999, 10, 1569-1570.

[28]. Dewan, S. K.; Singh, R.; Kumar, A. Arkivoc 2006, 2, 41-44.

[29]. Srinivas, K. V. N. S.; Reddy, E. B.; Das, B. Synlett. 2002, 4, 625-627.
https://doi.org/10.1055/s-2002-22701

[30]. Varma, R. S. Pure Appl. Chem. 2001, 73(1), 193-198.
https://doi.org/10.1351/pac200173010193

[31]. Varghese, A.; Nizam, A.; Kulkarni, R.; George, L. Eur. J. Chem. 2012, 3(2), 247-251.
https://doi.org/10.5155/eurjchem.3.2.247-251.571

[32]. Hoelz, L. V.; Goncalves, B. T.; Barros, J. C.; Mendes da Silva, J. F. Molecules, 2010, 15, 94-99.
https://doi.org/10.3390/molecules15010094

[33]. Song, Y.; Shen, D.; Zhang, Q.; Chen, B.; Xu, G. Tetrahedron Lett. 2014, 55(3), 639-641.
https://doi.org/10.1016/j.tetlet.2013.11.079

[34]. Kim, M.; Lee, J.; Lee, H. Y.; Chang, S. Adv. Synth. Catal. 2009, 351(11,12), 1807-1812.

[35]. Lee, J. C.; Yoon, J. M.; Baek, J. W. Bull. Korean Chem. Soc. 2007, 28(1), 29-30.
https://doi.org/10.5012/bkcs.2007.28.1.029

[36]. Ali, S. I.; Nikalje, M. D.; Dewkar, G. K.; Paraskar, A. S.; Jagtap, H. S.; Sudalai, A. J. Chem. Res. 2000, 2000(1), 30-31.
https://doi.org/10.3184/030823400103165572

[37]. Hatsuda, M.; Seki, M. Tetrahedron 2005, 61(41), 9908-9917.
https://doi.org/10.1016/j.tet.2005.06.061

[38]. Khalafi-Nezhad, A.; Mohammadi, S. RSC Advan. 2014, 4(27), 13782-13787.
https://doi.org/10.1039/c3ra43440k

[39]. An, X. D.; Yu, S. Organic Lett. 2015, 17(20), 5064-5067.
https://doi.org/10.1021/acs.orglett.5b02547

[40]. Hijji, Y. M.; Rajan, R.; Mansour, S.; Ben-Yahia, H. Acta Crystallog. E 2017, 73(9), 1326-1328.

Supporting Agencies

Qatar National Research Fund (Award NPRP-7-495-1-094), Qatar
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).