European Journal of Chemistry

Reticular synthesis, topological studies and physicochemical properties of a 3D manganese(II) coordination network [Mn3(BTC)2(DMSO)4]n

Crossmark


Main Article Content

Leonã da Silva Flores
Roselia Ives Rosa
Jefferson da Silva Martins
Roberto Rosas Pinho
Renata Diniz
Charlane Cimini Corrêa

Abstract

In order to build a metal-organic framework with mixed ligands (acid-acid), a 3D coordination network based on manganese metal center was obtained [Mn3(BTC)2(DMSO)4]n; where BTC = Benzene-1,3,5-tricarboxylic acid and DMSO = Dimethylsulfoxide. The crystal structure was determined by single crystal X-ray diffraction, showing the assembly of a tridimensional 3,6-connected non-entangled polymeric network, with RTL topology. The secondary building unit (SBU) acts as a node of the 3-periodic expansion and involves carboxylate- and oxo-bridged metals. The DMSO employed in the synthesis is chemically involved in the coordination as a µ2-O bridge between distinct manganese metal centers. The structural characterization of the material was supported by spectroscopic (infrared absorption and Raman scattering), thermal (TG, DTG, and DTA) and elemental analysis.


icon graph This Abstract was viewed 1284 times | icon graph Article PDF downloaded 583 times

How to Cite
(1)
Flores, L. da S.; Rosa, R. I.; Martins, J. da S.; Pinho, R. R.; Diniz, R.; Corrêa, C. C. Reticular Synthesis, Topological Studies and Physicochemical Properties of a 3D manganese(II) Coordination Network [Mn3(BTC)2(DMSO)4]n. Eur. J. Chem. 2019, 10, 180-188.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Schultz, J. L.; Wilks, E. S. Encyclopedia Of Polymer Science and Technology, 4th edition, John Wiley & Sons, 2005.

[2]. Ohrstrom, L.; Kemiteknik, I. K.; Hogskola, C. T.; Gothenburg, S. Crystals 2015, 5, 154-162.
https://doi.org/10.3390/cryst5010154

[3]. Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Paik Suh, M.; Reedijk, J. Pure Appl. Chem. 2013, 85, 1715-1724.
https://doi.org/10.1351/PAC-REC-12-11-20

[4]. Tranchemontagne, D. J.; Ni, Z.; Keeffe, M. O.; Yaghi, O. M. Angewandte. 2008, 47, 5136-5147.
https://doi.org/10.1002/anie.200705008

[5]. O'Keeffe, M. Chem. Soc. Rev. 2009, 38, 1215-1217..
https://doi.org/10.1039/b802802h

[6]. Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176-182.
https://doi.org/10.1021/ar020022l

[7]. Zhang, W. X.; Liao, P. Q.; Lin, R. B.; Wei, Y. S.; Zeng, M. H.; Chen, X. M. Coord. Chem. Rev. 2015, 293-294, 263-278.
https://doi.org/10.1016/j.ccr.2014.12.009

[8]. DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y.; Walton, K. S. J. Mater. Chem. A 2013, 1, 5642-5650.
https://doi.org/10.1039/c3ta10662d

[9]. O'Keeffe, M.; Eddaoudi, M.; Li, H.; Reineke, T.; Yaghi, O. M. J. Solid State Chem. 2000, 152, 3-20.
https://doi.org/10.1006/jssc.2000.8723

[10]. Furukawa, H.; Kim, J.; Ockwig, N. W.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 11650-11661.
https://doi.org/10.1021/ja803783c

[11]. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705-714.
https://doi.org/10.1038/nature01650

[12]. Li, M.; Li, D.; O'Keeffe, M.; Yaghi, O. M. Chem. Rev. 2014, 114, 1343-1370.
https://doi.org/10.1021/cr400392k

[13]. Kumar, K.; Murugesan, S. J. Saudi Chem. Soc. 2018, 22, 16-26.
https://doi.org/10.1016/j.jscs.2017.05.012

[14]. Lingenfelder, M.; Fuhr, J.; Gayone, J.; Ascolani, H. Encyclopedia of Interfacial Chemistry, Elsevier, 2018.

[15]. Xu, L.; Kwon, Y. U.; De Castro, B.; Cunha-Silva, L. Cryst. Growth Des. 2013, 13, 1260-1266.
https://doi.org/10.1021/cg301725z

[16]. Salavati-Niasari, M.; Soofivand, F.; Sobhani-Nasab, A.; Shakouri-Arani, M.; Yeganeh Faal, A.; Bagheri, S. Adv. Powder Technol. 2016, 27, 2066-2075.
https://doi.org/10.1016/j.apt.2016.07.018

[17]. Park, H. J.; Suh, M. P. Chem. Eur. J. 2008, 14, 8812-8821.
https://doi.org/10.1002/chem.200801064

[18]. Du, M.; Jiang, X. J.; Zhao, X. J. Chem. Commun. (Camb). 2005, 44, 5521-5523.
https://doi.org/10.1039/b509875k

[19]. Yin, Z.; Zhou, Y. L.; Zeng, M. H.; Kurmoo, M. Dalton Trans. 2015, 44, 5258-5275.
https://doi.org/10.1039/C4DT04030A

[20]. Sheldrick, G. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[21]. Sheldrick, G. Acta Crystallogr. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053273314026370

[22]. Sheldrick, G. Methods Enzymol. 1997, 276, 628-641.
https://doi.org/10.1016/S0076-6879(97)76083-X

[23]. Woińska, M.; Grabowsky, S.; Dominiak, P. M.; Woźniak, K.; Jayatilaka, D. Sci. Adv. 2016, 2, e1600192-e1600192.
https://doi.org/10.1126/sciadv.1600192

[24]. Lindon, J. C. Encyclopedia of Spectroscopy and Spectrometry, University of Durham, UK, Elsevier, 1999.

[25]. Farrugia, L. J. J. Appl. Cryst. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[26]. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[27]. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; Van De Streek, J. J. Appl. Cryst. 2006, 39, 453-457.
https://doi.org/10.1107/S002188980600731X

[28]. Mugheirbi, N. A.; Tajber, L. Mol. Pharm. 2015, 12, 3468-3478.
https://doi.org/10.1021/acs.molpharmaceut.5b00480

[29]. Blatov, V. A.; Shevchenko, A. P.; Serezhkin, V. N. J. Appl. Crystallogr. 2000, 33, 1193-1193.
https://doi.org/10.1107/S0021889800007202

[30]. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Cryst. Growth Des. 2014, 14, 3576-3586.
https://doi.org/10.1021/cg500498k

[31]. Fedorov, A. V.; Shamanaev, I. V. Mol. Inform. 2017, 36, 1-8.
https://doi.org/10.1002/minf.201600162

[32]. Zhang, S.; Hua, Y.; Chen, Z.; Zhang, S.; Hai, H. Inorganica Chim. Acta 2018, 471, 530-536.
https://doi.org/10.1016/j.ica.2017.11.045

[33]. Rardin, R. L.; Poganiuch, P.; Bino, A.; Goldberg, D. P.; Tolman, W. B.; Liu, S.; Lippard, S. J. J. Am. Chem. Soc. 1992, 114, 5240-5249.
https://doi.org/10.1021/ja00039a041

[34]. Yang, Y. Q.; Zhang, M. B.; Chen, M. S.; Chen, Z. M. Zeitsch. Naturforsch. B 2012, 67, 209-212.
https://doi.org/10.5560/ZNC.2012.67c0077

[35]. Jeong, S.; Song, X.; Jeong, S.; Oh, M.; Liu, X.; Kim, D.; Moon, D.; Lah, M. S. Inorg. Chem. 2011, 50, 12133-12140
https://doi.org/10.1021/ic201883f

[36]. Fomina, I.; Dobrokhotova, Z.; Aleksandrov, G.; Emelina, A.; Bykov, M.; Malkerova, I.; Bogomyakov, A.; Puntus, L.; Novotortsev, V.; Eremenko, I. J. Solid State Chem. 2012, 185, 49-55.
https://doi.org/10.1016/j.jssc.2011.09.033

[37]. Hoffman, A. E. J.; Vanduyfhuys, L.; Nevjestić, I.; Wieme, J.; Rogge, S. M. J.; Depauw, H.; Van Der Voort, P.; Vrielinck, H.; Van Speybroeck, V. J. Phys. Chem. C 2018, 122, 2734-2746.
https://doi.org/10.1021/acs.jpcc.7b11031

[38]. Zhang, Y. B.; Furukawa, H.; Ko, N.; Nie, W.; Park, H. J.; Okajima, S.; Cordova, K. E.; Deng, H.; Kim, J.; Yaghi, O. M. J. Am. Chem. Soc. 2015, 137, 2641-2650.
https://doi.org/10.1021/ja512311a

[39]. Bonneau, C.; Delgado-friedrichs, O.; Keeffe, M. O.; Omar, M.; Bonneau, C.; Delgado-friedrichs, O.; Keeffe, O. Acta Crystallogr. A 2004, 60, 517-520.
https://doi.org/10.1107/S0108767304015442

[40]. Cotton, F. A.; Francis, R.; Horrocks, W. D. J. Phys. Chem. 1960, 64, 1534-1536.
https://doi.org/10.1021/j100839a046

[41]. Chen, L.; Mowat, J. P. S.; Fairen-Jimenez, D.; Morrison, C. A.; Thompson, S. P.; Wright, P. A.; Düren, T. J. Am. Chem. Soc. 2013, 135, 15763-15773.
https://doi.org/10.1021/ja403453g

[42]. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A, 6th edition, John Wiley & Sons, 2009.
https://doi.org/10.1002/9780470405888

[43]. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B, 6th edition, John Wiley & Sons, 2009.
https://doi.org/10.1002/9780470405888

[44]. Carbonnelle, E.; Mesquita, C.; Bille, E.; Day, N.; Dauphin, B.; Beretti, J. L.; Ferroni, A.; Gutmann, L.; Nassif, X. J. Clin. Biochem. 2011, 44, 104-109.
https://doi.org/10.1016/j.clinbiochem.2010.06.017

[45]. Guo, Z.; He, L. Anal. Bioanal. Chem. 2007, 387, 1939-1944.
https://doi.org/10.1007/s00216-006-1100-3

[46]. Guo, Z.; Zhang, Q.; Zou, H.; Guo, B.; Ni, J. Anal. Chem. 2002, 74, 1637-1641.
https://doi.org/10.1021/ac010979m

[47]. Cohen, L. H.; Gusev, A. I. Anal. Bioanal. Chem. 2002, 373, 571-586.
https://doi.org/10.1007/s00216-002-1321-z

[48]. Wang, S.; Niu, H.; Zeng, T.; Zhang, X.; Cao, D.; Cai, Y. Microporous Mesoporous Mater. 2017, 239, 390-395.
https://doi.org/10.1016/j.micromeso.2016.10.032

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).