European Journal of Chemistry

Rationale design and synthesis of some novel imidazole linked thiazolidinone hybrid molecules as DNA minor groove binders

Crossmark


Main Article Content

Javeed Ahmad War
Santosh Kumar Srivastava

Abstract

A new series of imidazole linked thiazolidinone hybrid molecules was designed and subsequently synthesized through a feasible, three step reaction protocol. The structures of these molecules were established using FT-IR, 1H NMR, 13C NMR and HRMS techniques. In vitro susceptibility tests against some Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) exhibited broad spectrum potency of the molecules. The most potent molecule (S2A7) amongst the screened molecules, showed minimum inhibitory concentration (MIC) value not less than 2.0 µg/mL which was at par with the reference drug Streptomycin. Structure activity relationships revealed nitro and chloro groups being crucial for bioactivity when present at meta position of arylidene ring in 3-(3-(imidazol-1-yl)propyl)-5-(benzylidene)-2-(phenylimino)thiazolidin-4-one. Deoxyribonucleic acid (DNA)and bovine serum albumin (BSA) binding studies for S2A7 under simulated physiological pH were probed using UV-Visible, fluorescence quenching, gel electrophoresis and molecular docking techniques. These studies established that S2A7 has strong binding affinity towards DNA and binds at the minor groove of DNA with binding constant (Kb) of 0.1287×102 L/mol. Molecular docking simulations of S2A7 with DNA and BSA predicted binding affinity of -9.2 and -7.2 kcal/mol, respectively. Van der Waals forces and hydrogen bonding interactions were predicted as the main forces of interaction. With DNA, S2A7 exhibited specific binding affinity towards adenine-thiamine base pairs. The compound S2A7 forms a stable complex with BSA by binding at subdomain IIIA implying high bio-distribution of the compound.


icon graph This Abstract was viewed 1249 times | icon graph Article PDF downloaded 654 times

How to Cite
(1)
War, J. A.; Srivastava, S. K. Rationale Design and Synthesis of Some Novel Imidazole Linked Thiazolidinone Hybrid Molecules As DNA Minor Groove Binders. Eur. J. Chem. 2020, 11, 120-132.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Hofer, U. Nature Rev. Microbiol. 2019, 17(1), 3-3.
https://doi.org/10.1038/s41579-018-0125-x

[2]. Van Boeckel, T. P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N. G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Science 2019, 365(6459), 1-5.
https://doi.org/10.1126/science.aaw1944

[3]. Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. Front. Public Health 2019, 7, 151, 1-25.
https://doi.org/10.3389/fpubh.2019.00151

[4]. Organization, W. H. Antimicrobial resistance: global report on surveillance. World Health Organization, ISBN: 978 92-4-156474-8, 2014.

[5]. Dougan, G.; Dowson, C.; Overington, J.; Participants, N. G. A. D. S. Drug Discov. Today 2019, 24(2), 452-461.
https://doi.org/10.1016/j.drudis.2018.11.015

[6]. Chernov, V. M.; Chernova, O. A.; Mouzykantov, A. A.; Lopukhov, L. L.; Aminov, R. I. Expert Opin. Drug Dis. 2019, 14(5), 455-468.
https://doi.org/10.1080/17460441.2019.1588880

[7]. Desai, N.; Joshi, V.; Rajpara, K.; Makwana, A. H. Arabian J. Chem. 2017, 10, S589-S599.
https://doi.org/10.1016/j.arabjc.2012.10.020

[8]. Obinata, D.; Ito, A.; Fujiwara, K.; Takayama, K. I.; Ashikari, D.; Murata, Y.; Yamaguchi, K.; Urano, T.; Fujimura, T.; Fukuda, N. Cancer Sci. 2014, 105(10), 1272-1278.
https://doi.org/10.1111/cas.12493

[9]. Hu, Y.; Shen, Y.; Wu, X.; Tu, X.; Wang, G. X. Eur. J. Med. Chem. 2018, 143, 958-969.
https://doi.org/10.1016/j.ejmech.2017.11.100

[10]. Devi, P. B.; Samala, G.; Sridevi, J. P.; Saxena, S.; Alvala, M.; Salina, E. G.; Sriram, D.; Yogeeswari, P. ChemMedChem 2014, 9(11), 2538-2547.
https://doi.org/10.1002/cmdc.201402171

[11]. Hidalgo‐Figueroa, S.; Ramirez‐Espinosa, J. J.; Estrada‐Soto, S.; Almanza‐Perez, J. C.; Roman‐Ramos, R.; Alarcon‐Aguilar, F. J.; Hernandez‐Rosado, J. V.; Moreno‐Diaz, H.; Diaz‐Coutino, D.; Navarrete‐Vazquez, G. Chem. Bio. Drug Des. 2013, 81(4), 474-483.
https://doi.org/10.1111/cbdd.12102

[12]. Barros, F. W.; Silva, T. G.; da Rocha Pitta, M. G.; Bezerra, D. P.; Costa-Lotufo, L. V.; de Moraes, M. O.; Pessoa, C.; de Moura, M. A. F.; de Abreu, F. C.; de Lima, M. d. C. A. Bioorg. Med. Chem. 2012, 20(11), 3533-3539.
https://doi.org/10.1016/j.bmc.2012.04.007

[13]. Decker, M. Design of Hybrid Molecules for Drug Development, Elsevier, ISBN: 978-0-08-101011-2, 2017.

[14]. Nirwan, S.; Chahal, V.; Kakkar, R. J. Heterocyc. Chem. 2019, 56(4), 1239-1253.
https://doi.org/10.1002/jhet.3514

[15]. Desai, N.; Joshi, V.; Rajpara, K.; Vaghani, H.; Satodiya, H. Med. Chem. Res. 2013, 22(4), 1893-1908.
https://doi.org/10.1007/s00044-012-0190-z

[16]. War, J. A.; Srivastava, S. K.; Srivastava, S. D. Spectrochim. Acta A 2017, 173, 270-278.
https://doi.org/10.1016/j.saa.2016.07.054

[17]. War, J. A.; Srivastava, S. K.; Srivastava, S. D. Eur. J. Chem. 2016, 7(3), 271-279.
https://doi.org/10.5155/eurjchem.7.3.271-279.1427

[18]. War, J. A.; Srivastava, S. K.; Srivastava, S. D. Luminescence 2017, 32(1), 104-113.
https://doi.org/10.1002/bio.3156

[19]. Kohanski, M. A.; Dwyer, D. J.; Collins, J. J. Nature Rev. Microbiol. 2010, 8(6), 423-435.
https://doi.org/10.1038/nrmicro2333

[20]. Pindur, U.; Jansen, M.; Lemster, T. Curr. Med. Chem. 2005, 12(24), 2805-2847.
https://doi.org/10.2174/092986705774454698

[21]. Dar, A. M.; Gatoo, M. A.; Ahmad, A.; Ahmad, M. S.; Najar, M. H. J. Fluoresc. 2015, 25(5), 1377-1387.
https://doi.org/10.1007/s10895-015-1628-8

[22]. Paulikova, H.; Vantova, Z.; Hunakova, L.; Cizekova, L.; Carna, M.; Kozurkova, M.; Sabolova, D.; Kristian, P.; Hamulakova, S.; Imrich, J. Bioorg. Med. Chem. 2012, 20(24), 7139-7148.
https://doi.org/10.1016/j.bmc.2012.09.068

[23]. Shi, J. H.; Liu, T. T.; Jiang, M.; Chen, J.; Wang, Q. J. Photochem. Photobiol. B: Biol. 2015, 147, 47-55.

[24]. Dervan, P. B.; Edelson, B. S. Curr. Opin. Struct. Biol. 2003, 13(3), 284-299.
https://doi.org/10.1016/S0959-440X(03)00081-2

[25]. Drew, W. L.; Barry, A.; O'Toole, R.; Sherris, J. C. Appl. Environ. Microbiol. 1972, 24(2), 240-247.
https://doi.org/10.1128/AEM.24.2.240-247.1972

[26]. Wiegand, I.; Hilpert, K.; Hancock, R. E. Nature Prot. 2008, 3(2), 163-175.
https://doi.org/10.1038/nprot.2007.521

[27]. Molinspiration Cheminformatics, Web server, Retrieved April 01, 2020, from www.molinspiration.com.

[28]. Molsoft LLC, Web server, Retrieved April 01, 2020, from www.molsoft.com.

[29]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[30]. Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31(2), 455-461.

[31]. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2012, 64, 4-17.
https://doi.org/10.1016/j.addr.2012.09.019

[32]. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43(20), 3714-3717.
https://doi.org/10.1021/jm000942e

[33]. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45(12), 2615-2623.
https://doi.org/10.1021/jm020017n

[34]. Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. 2004, 101(48), 16789-16794.
https://doi.org/10.1073/pnas.0407607101

[35]. Fei, Y.; Lu, G.; Fan, G.; Wu, Y. Anal. Sci. 2009, 25(11), 1333-1338.
https://doi.org/10.2116/analsci.25.1333

[36]. Sirajuddin, M.; Ali, S.; Badshah, A. J. Photochem. Photobiol. B: Biol. 2013, 124, 1-19.
https://doi.org/10.1016/j.jphotobiol.2013.03.013

[37]. Rafique, B.; Khalid, A. M.; Akhtar, K.; Jabbar, A. Biosens. Bioelectron. 2013, 44, 21-26.
https://doi.org/10.1016/j.bios.2012.12.028

[38]. Kumar, C. V.; Punzalan, E. H.; Tan, W. B. Tetrahedron 2000, 56(36), 7027-7040.
https://doi.org/10.1016/S0040-4020(00)00526-3

[39]. Wang, T.; Zhao, Z.; Zhang, L.; Ji, L. J. Mol. Struc. 2009, 937(1-3), 65-69.
https://doi.org/10.1016/j.molstruc.2009.08.015

[40]. Baguley, B. Mol. Cell. Biochem. 1982, 43(3), 167-181.
https://doi.org/10.1007/BF00223008

[41]. Taylor, R. D.; Jewsbury, P. J.; Essex, J. W. J. Comput. Aided Mol. Des. 2002, 16(3), 151-166.
https://doi.org/10.1023/A:1020155510718

[42]. Ricci, C. G.; Netz, P. A. J. Chem. Inform. Model. 2009, 49(8), 1925-1935.
https://doi.org/10.1021/ci9001537

[43]. Shen, G. F.; Liu, T. T.; Wang, Q.; Jiang, M.; Shi, J. H. J. Photochem. Photobiol. B: Biol. 2015, 153, 380-390.
https://doi.org/10.1016/j.jphotobiol.2015.10.023

Supporting Agencies

Department of Science and Technology, INSPIRE program (INSPIRE ID, IF120399), New-Delhi, India.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).