European Journal of Chemistry

Effect of inclusion of citric acid and Lutrol® F-68 on ziprasidone and β-cyclodextrin complexation: Characterization, solubility and dissolution studies

Crossmark


Main Article Content

Vaishali Yogesh Londhe
Sreevidya Ramesh Krishnan

Abstract

Ziprasidone (ZPR) is an antipsychotic agent having less solubility. It is used for the treatment of schizophrenia. Complexation of hydrophobic drugs with cyclodextrins leads to enhanced solubility and dissolution. In this study, inclusion complexes were prepared by different methods, using ZPR, β-cyclodextrin (β-CD), and different auxiliary agents like hydrophilic polymer and hydroxy acid (1:1:0.5) to improve the aqueous solubility. The characterization of the ternary complexes was carried out using solubility study, Differential scanning calorimetry (DSC), Powder X-ray diffraction (PXRD), Fourier transformation infrared spectroscopy (FT-IR) and in vitro dissolution studies. DSC, XRD, and FT-IR studies showed interaction in drug, cyclodextrin, and auxiliary agents which are confirmed by enhancement of solubility and dissolution. Spray-dried dispersion showed less crystallinity and higher solubility as compared to the kneading method for both citric acid and Lutrol® F-68. Thus, the investigation concludes that the presence of the auxiliary agent has a synergistic action on complexation with cyclodextrin, which helps to modify the physicochemical properties of the drug.


icon graph This Abstract was viewed 1384 times | icon graph Article PDF downloaded 609 times

How to Cite
(1)
Londhe, V. Y.; Krishnan, S. R. Effect of Inclusion of Citric Acid and Lutrol® F-68 on Ziprasidone and β-Cyclodextrin Complexation: Characterization, Solubility and Dissolution Studies. Eur. J. Chem. 2020, 11, 280-284.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Gribbon, P.; Andreas, S. Drug Discov. Today 2005, 1, 17-22.
https://doi.org/10.1016/S1359-6446(04)03275-1

[2]. Kim, C. K.; Park, J. S. Am. J. Drug Deliv. 2004, 2, 113-130.
https://doi.org/10.2165/00137696-200402020-00004

[3]. Leuner, C.; Dressman, J. Eur. J. Pharm. Biopharm. 2000, 50, 47-60.
https://doi.org/10.1016/S0939-6411(00)00076-X

[4]. Brewster, M. E.; Loftsson, T. Adva. Drug Deliv. Rev. 2007, 59, 645-666.
https://doi.org/10.1016/j.addr.2007.05.012

[5]. Loftsson, T.; Duchene, D. Inter. J. Pharm. 2007, 329, 1-11.
https://doi.org/10.1016/j.ijpharm.2006.10.044

[6]. Conceicao, J.; Adeoye, O.; Cabral-Marques, H. M.; Lobo, J. Curr. Pharm. Design 2018, 24, 1405-1433.
https://doi.org/10.2174/1381612824666171218125431

[7]. Sherje, A.; Londhe, V. Curr. Drug Discov. Tech. 2014, 11, 271-278.
https://doi.org/10.2174/1570163812666150109103618

[8]. Sigurdardottir, A. M.; Loftsson, T. Int. J. Pharm. 1995, 126, 73-78.

[9]. Danel, C.; Azaroual, N.; Chavaria, C.; Odou, V.; Martel, B.; Vaccher, C. Carbohydr. Polym. 2013, 92, 2282-2292.
https://doi.org/10.1016/j.carbpol.2012.11.095

[10]. Gaspar de Araujo, M. V. J. Mol. Struc. 2017, 1150, 146-154.
https://doi.org/10.17267/2317-3394rpds.v6i3.1596

[11]. Patel, P.; Agrawal, Y. K.; Sarvaiya, J. Int. J. Bio. Macromol. 2016, 84, 182-188.
https://doi.org/10.1016/j.ijbiomac.2015.11.075

[12]. Soliman, K. A.; Ibrahim, H. K.; Ghorab, M. M. Int. J. Pharm. 2016, 512, 168-177.
https://doi.org/10.1016/j.ijpharm.2016.08.044

[13]. Pokharkar, V.; Khanna, A.; Venkatpurwar, V.; Dhar, S.; Mandpe, L. Acta Pharm. 2009, 59, 121-132.
https://doi.org/10.2478/v10007-009-0001-3

[14]. Redenti, E.; Szente, L.; Szejtli, J. J. Pharm. Sci. 2000, 89, 1-8.
https://doi.org/10.1002/(SICI)1520-6017(200001)89:1<1::AID-JPS1>3.0.CO;2-W

[15]. Sherje, A. P.; Londhe, V. J. Pharm. Innov. 2015, 10, 324-334.
https://doi.org/10.1007/s12247-015-9229-2

[16]. Taupitz, T.; Dressman, J. B.; Buchanan, C. M.; Klein, S. Eur. J. Pharm. Biopharm. 2013, 83, 378-387.
https://doi.org/10.1016/j.ejpb.2012.11.003

[17]. Rakkaew, P.; Suksiriworapong, J.; Chantasart, D. Pharm. Dev. Technol. 2018, 23, 715-722.
https://doi.org/10.1080/10837450.2017.1344993

[18]. Germain, P.; Bilial, M.; De Brauner, C. Termochim. Acta 1995, 259, 187-198.
https://doi.org/10.1016/0040-6031(95)02260-9

[19]. Fenyvesi, E.; Vikmon, M.; Szema, J.; Redenti, E.; Del-canale, M.; Ventura, P.; Szejtli, J. J. Incl. Phenom. 1999, 33, 339-344.
https://doi.org/10.1023/A:1008094702632

[20]. Haque, N.; Prabhu, N. P. Biochem. Biophys. Res. Commun. 2018, 499, 907-912.
https://doi.org/10.1016/j.bbrc.2018.04.018

[21]. Li, X.; Yang, M.; Li, Y.; Gong, W.; Wang, Y.; Shan, L.; Shao, S.; Gao, C. Current Drug Deliv. 2017, 14, 1130-1143.
https://doi.org/10.2174/1567201813666161003151225

[22]. Daniel, D. G.; Zimbroff, D. L.; Potkin, S. G.; Reeves, K. R.; Harrigan, E. P.; Lakshmi Narayanan, M. Neuropsychopharmacology 1999, 20, 491-505.
https://doi.org/10.1016/S0893-133X(98)00090-6

[23]. Gauniya, A.; Mazumder, R.; Pathak, K. Int. J. Pharm. Pharm. Sci. 2015, 7, 146-150.

[24]. Thombre, A. G.; Shah, J. C.; Sagawa, K.; Caldwell, W. B. Int. J. Pharm. 2012, 428, 8-17.
https://doi.org/10.1016/j.ijpharm.2012.02.004

[25]. Mogal, P.; Derle, D. J. Drug Design Med. Chem. 2017, 3, 37-48.
https://doi.org/10.11648/j.jddmc.20170303.12

[26]. Kim, Y.; Oksanen, A. D.; Massefski, W.; Blake, F. J. Jr.; Duffy, M. E.; Chrunyk, B. J. Pharm. Sci. 1998, 87, 1560-1567.
https://doi.org/10.1021/js980109t

[27]. Thombre, A. G.; Herbig, S. M.; Alderman, J. A. Pharm. Res. 2011, 28, 3159-3170.
https://doi.org/10.1007/s11095-011-0505-7

[28]. Deshmukh, S. S.; Potnis, V. V.; Shelar, D. B.; Mahaparale, P. Indian Drugs 2007, 44, 677-682.

[29]. Miao, Y.; Chen, G.; Ren, L.; Pingkai, O. Drug Deliv. 2016, 23, 2163-2172.
https://doi.org/10.3109/10717544.2014.950768

[30]. Higuchi, T. K. A. C. Adv. Anal. Chem. Instrum. 1965, 4, 117-211.

[31]. Londhe, V. Y.; Deshmane, A. B.; Singh, S. R.; Kulkarni, Y. A. J. Mol. Struc. 2018, 1157, 395-400.
https://doi.org/10.1016/j.molstruc.2017.12.042

[32]. Dua, K.; Pubreja K.; Ramana, M. V.; Lather, V. J. Pharm. Bioallied Sci. 2011, 3(3), 417-425.
https://doi.org/10.4103/0975-7406.84457

[33]. National Library of Medicine, PubChem, Retrieved Mar 22, 2019, from https://pubchem. ncbi. nlm. nih. gov/compound/Ziprasidone

[34]. Londhe, V. Y.; Pawar A.; Kundaikar, H. J. Mol. Struc. 2020, 1220, 128615.
https://doi.org/10.1016/j.molstruc.2020.128615

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).