European Journal of Chemistry

Regiospecific substitution of the β-vinylic sp2 carbon of cyclohexenones bearing the α-chloro- and β-tosylate-groups: Single crystal XRD/Hirshfeld surface/in-silico studies of three representative compounds

Crossmark


Main Article Content

Arkalgud Satyanarayana Jeevan Chakravart
Suresh Hari Prasad

Abstract

2-Chloro-3-tosyl-5,5-dimethyl-2-cyclohexenone was subjected to a series of regiospecific Suzuki-Miyaura cross-coupling reactions in suspensions of nine different substituted boronic acids, Pd(OAc)2, P(Ph3)3, K3PO4 and 1,4-dioxane solvent, under sealed tube conditions. The regiospecific substitution of the tosyl-group by the aryl group in preference over the chloride- group was observed. A comparison between the bromo- and tosylate group’s reactivities is highlighted. Using the methodology, the products: 2-chloro-3-aryl-5,5-dimethyl-2-cyclohexenones were isolated in greater than 85% yields. Good quality crystals of three representative compounds were obtained by slow evaporation technique and subjected to single crystal XRD studies, Hirshfeld surface analysis, 3-D energy framework, and molecular docking studies. Crystal data for compound 3; C15H17ClO4S: monoclinic, space group P21/c (no. 14), a = 8.8687(3) Å, b = 10.5537(4) Å, c = 16.6862(7) Å, β = 89.807(3)°, V = 1561.78(10) Å3, Z = 4, T = 290 K, μ(MoKα) = 0.390 mm-1, Dcalc = 1.398 g/cm3, 13623 reflections measured (6.716° ≤ 2Θ ≤ 54.962°), 3570 unique (Rint = 0.0467, Rsigma = 0.0512) which were used in all calculations. The final R1 was 0.0452 (I > 2σ(I)) and wR2 was 0.1019 (all data). Crystal data for compound 5e; C20H18O2FCl: monoclinic, space group P21/c (no. 14), a = 6.4900(5) Å, b = 18.6070(13) Å, c = 14.2146(11) Å, β = 102.324(2)°, V = 1677.0(2) Å3, Z = 4, T = 296(2) K, μ(MoKα) = 0.239 mm-1, Dcalc = 1.309 g/cm3, 25575 reflections measured (6.262° ≤ 2Θ ≤ 52.224°), 3283 unique (Rint = 0.0494, Rsigma = 0.0307) which were used in all calculations. The final R1 was 0.0875 (I > 2σ(I)) and wR2 was 0.2056 (all data). Crystal data for compound 5h; C12H13OSCl: triclinic, space group P-1 (no. 2), a = 6.7517(6) Å, b = 8.8376(9) Å, c = 12.6049(12) Å, α = 109.538(3)°, β = 98.597(3)°, γ = 90.417(3)°, V = 699.52(12) Å3, Z = 2, T = 290 K, μ(MoKα) = 0.410 mm-1, Dcalc = 1.376 g/cm3, 28754 reflections measured (6.114° ≤ 2Θ ≤ 59.288°), 3898 unique (Rint = 0.0544, Rsigma = 0.0349) which were used in all calculations. The final R1 was 0.1101 (I > 2σ(I)) and wR2 was 0.2481 (all data).


icon graph This Abstract was viewed 1636 times | icon graph Article PDF downloaded 683 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Chakravart, A. S. J.; Prasad, S. H. Regiospecific Substitution of the β-Vinylic Sp2 Carbon of Cyclohexenones Bearing the α-Chloro- and β-Tosylate-Groups: Single Crystal XRD Hirshfeld Surface In-Silico Studies of Three Representative Compounds. Eur. J. Chem. 2020, 11, 261-275.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Li, Y.; Luo, Y.; Peng, L.; Li, Y.; Zhao, B.; Wang, W.; Lang, H.; Deng, Y.; Bai, R.; Lan, Y.; Yin, G. Nature Commun. 2020, 11, 417.
https://doi.org/10.1038/s41467-019-14016-1

[2]. Lee, H. W.; So, C. M.; Yuen, O. Y.; Wong, W. T.; Kwong, F. Y. Org. Chem. Front. 2020, 7, 926-932.
https://doi.org/10.1039/C9QO01537J

[3]. Keaveney, S. T.; Kundu, G.; Schoenebeck, F. Angew. Chem. Int. Ed. Engl. 2018, 130, 12753-12757.
https://doi.org/10.1002/ange.201808386

[4]. Komeyama, K.; Tsunemitsu, R.; Michiyuki, T.; Yoshida, H.; Osaka, I. Molecules 2019, 24, 1458-1468.
https://doi.org/10.3390/molecules24081458

[5]. Chakravarthy, A. S. J.; Pavan, K. P.; Venkatesh, G. B.; Hariprasad, S. Synthetic Commun. 2020, 50(6), 849-857.
https://doi.org/10.1080/00397911.2020.1723108

[6]. Chakravarthy, A. S. J.; Madhura, M. J.; Gayathri, V.; Hariprasad, S. Tetrahedron Lett. 2020, 60(2), 151391.

[7]. Chakravarthy, A. S. J.; Krishnamurthy, M. S.; Begum, N. S.; Hariprasad, S. Mol. Crys. Liq. Crys. 2019, 682(1), 65-76.

[8]. APEX2 Bruker, SAINT-Plus and SADABS, Bruker AXS Inc., Wisconsin, Madison, USA, 2004.

[9]. Sheldrick, G. M. Acta Cryst. C, 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[10]. Spek, A. L. Acta Cryst. C 2015, 71, 9-18.
https://doi.org/10.1107/S2053229614024929

[11]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood. P. A. J. Appl. Cryst. 2008, 41(2), 466-470.
https://doi.org/10.1107/S0021889807067908

[12]. Sreenatha, N. R.; Lakshminarayana, B. N.; Ganesha, D. P.; Gnanendra, C. R. Acta Cryst. E 2018, 74, 1451-1454.
https://doi.org/10.1107/S2056989018012173

[13]. Sreenatha, N. R.; Lakshminarayana, B. N.; Ganesha, D. P.; Vijayshankar, S.; Nagaraju, S. X-Ray Struc. Anal. Online 2018, 34, 24-25.

[14]. Spackman, M. A.; Jayatilaka, D. Cryst. Eng. Comm. 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

[15]. Spackman, M. A.; McKinnon, J. J.; Jayatilaka, D. Cryst. Eng. Comm. 2008, 10(4), 377-388.

[16]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Comm. 2017, 3814-3816.

[17]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer 17.5. The University of Western Australia, 2017.

[18]. Turner, M. J.; Grabowsky, S.; Jayatilaka, D.; Spackman, M. A. J. Phys. Chem. Lett. 2014, 5, 4249-4255.
https://doi.org/10.1021/jz502271c

[19]. Sanner, M. F. J. Mol. Grap. Mod. 1999, 17(1), 57-61.

[20]. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. Prot. Eng. 1995, 8(2), 127-134.
https://doi.org/10.1093/protein/8.2.127

[21]. McVeigh, M. S.; Kelleghan, A. V.; Yamano, M. M.; Knapp, R. R.; Garg, N. K. Org. Lett. 2020, 22(11), 4500-4504.
https://doi.org/10.1021/acs.orglett.0c01510

[22]. Geenen, S. R.; Schumann, T.; Mueller, T. J. J. J. Org. Chem. 2020, 85(15), 9737-9750.
https://doi.org/10.1021/acs.joc.0c01059

[23]. Mpungose, P. P.; Vundla, Z. P.; Maguire, G. E. M.; Friedrich, H. B. Molecules 2018, 23(7), 1676-1699.
https://doi.org/10.3390/molecules23071676

[24]. Boeyens, J. C. A. J. Cryst. Mol. Struct. 1978, 8, 317-320.
https://doi.org/10.1007/BF01200485

[25]. Cremer, D. Acta Cryst. B 1984, 40, 498-500.
https://doi.org/10.1107/S0108768184002548

[26]. Sreenatha, N. R.; Chakravarthy, A. S. J.; Suchithra, B.; Lakshminarayana, B. N.; Hariprasad, S.; Ganesha, D. P. J. Mol. Struc. 2020, 1210, 127979.
https://doi.org/10.1016/j.molstruc.2020.127979

[27]. Sreenatha, N. R.; Chakravarthy, A. S. J.; Lakshminarayana, B. N.; Hariprasad, S. J. Mol. Struc. 2021, 1225, 129116.
https://doi.org/10.1016/j.molstruc.2020.129116

[28]. Sreenatha, N. R.; Lakshminarayana, B. N.; Ganesha, D. P.; Gnanendra, C. R.; Nagaraju, S.; Madan, S. K. Chem. Data Coll. 2018, 17-18, 394-403.

[29]. Sreenatha, N. R.; Lakshminarayana, B. N.; Madan, S. K.; Mahadeva, T. N. P.; Kiran, K. S.; Vijayshankar, D, S.; Byrappa, K. Chem. Data Coll. 2017, 11-12, 131-138.

[30]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ 2017, 4(5), 575-587.
https://doi.org/10.1107/S205225251700848X

[31]. Gysin, S. Genes Cancer 2011, 2(3), 359-372.
https://doi.org/10.1177/1947601911412376

[32]. O'Bryan, J. P. Pharmacol Res. 2019, 139, 503-511.
https://doi.org/10.1016/j.phrs.2018.10.021

[33]. Janes, M. R.; Zhang, J.; Li, L. Cell 2018, 172(3), 578-589.e17.
https://doi.org/10.1016/j.cell.2018.01.006

Supporting Agencies

The Council of Scientific and Industrial Research (CSIR), SRF – File no. 09/039(0119)/2018-EMR-1, Government of India, New Delhi, INDIA.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).