European Journal of Chemistry

Nutritional and antioxidant potential of seeds from two Cucurbitaceae species from Senegal

Crossmark


Main Article Content

Amadou Diop
Serigne Omar Sarr
Awa Boubou Sall
Ousmane Niass
Bara Ndiaye
Yerim Mbagnick Diop

Abstract

Cucurbits are largely grown in tropical and subtropical areas for nutritional and medicinal purposes. In Senegal, two species, watermelon (Citrullus lanatus) and pumpkin (Cucurbita pepo), are cultivated and their use include consumption of flesh or the whole fruit. In general, people don’t give importance to seeds which can have nutritional properties of great interest. Hence, the relevance of this study whose objective is to assess the nutritional and therapeutic properties of seeds. For that purpose, the seeds of watermelon and pumpkin were air-dried, manually shelled, ground, and subjected to assays including physicochemical determination, characterization of oils, phytochemical screening and antioxidant analysis. Proteins (28.46 - 32.85 %), fat (36.3 - 39.7 %) and carbohydrates (23.6 - 13.9 %) were the main chemical components found in watermelon and pumpkin seeds. Micro-elements such as potassium, magnesium, phosphorous, calcium, and iron were also found with potassium showing the highest levels as 1026.07 and 635.00 mg/100 g for watermelon and pumpkin, respectively. Magnesium and phosphorous were the following minerals in terms of level content. The unsaturated fatty acids (UFAs) were predominant in seed oils with the linoleic acid most representative as 73.01 and 35.90% for watermelon and pumpkin, respectively. From the saturated fatty acids (SFAs), the palmitic acid was the most important. Phytochemical components in seeds include the presence of alkaloids, cardiac glycosides, flavonoids, and tannins in the ethanolic extracts of pumpkin and watermelon seeds. Regarding to the radical scavenging activity, relatively close values have been obtained for fractions from the ethanolic watermelon extract, the aqueous fraction showing the highest antioxidant activity (26.82%). For pumpkin, the highest values were registered for ethyl acetate and aqueous fractions as 36.17 and 35.36%, respectively. Therefore, seeds from watermelons and pumpkin cultivated in Senegal exhibited interesting nutritional and antioxidant properties which argue in favor of their use to overcome malnutrition issues.


icon graph This Abstract was viewed 1112 times | icon graph Article PDF downloaded 690 times

How to Cite
(1)
Diop, A.; Sarr, S. O.; Sall, A. B.; Niass, O.; Ndiaye, B.; Diop, Y. M. Nutritional and Antioxidant Potential of Seeds from Two Cucurbitaceae Species from Senegal. Eur. J. Chem. 2020, 11, 364-369.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Schaffer, A. A.; Paris, H. S. Melons, Squashes, and Gourds. In Reference Module in Food Science; Elsevier, 2016.
https://doi.org/10.1016/B978-0-08-100596-5.03426-0

[2]. Dhiman, K.; Gupta, A.; Sharma, D. K.; Gill, N. S.; Goyal, A. Asian J. Clin. Nutr. 2012, 4(1), 16-26.
https://doi.org/10.3923/ajcn.2012.16.26

[3]. Sheela, K.; Kamal, G. N.; Vijayalakshmi, D.; Geeta, M. Y.; Roopa, B. P. J. Human Ecol. 2004, 15, 227-229.
https://doi.org/10.1080/09709274.2004.11905698

[4]. Nnamani, C. V.; Oselebe, H. O.; Okporie, E. O. Proceeding of 20th Annual National Conference of Biotechnology Society of Nigeria, 2007, pp. 111-114.

[5]. Abd El‐Rehem, F.; Abd El‐Rehem, A.; Ali, R. F. M. Eur. J. Chem. 2013, 4(3), 185‐190.
https://doi.org/10.5155/eurjchem.4.3.185-190.711

[6]. Kumar, D.; Kumar, S.; Singh, J.; Rashmi, N.; Vashistha, B. D.; Singh, N. J. Young Pharm. 2010, 2(4), 365-368.
https://doi.org/10.4103/0975-1483.71627

[7]. Chekroun, E.; Benariba, N.; Adida, H.; Bechiri, A.; Azzi, R.; Djaziri, R. Asian Pac. J. Trop. Dis. 2015, 5(8), 632-637.
https://doi.org/10.1016/S2222-1808(15)60903-3

[8]. Chunduri, J. R. Int. J. Bioassays 2013, 2(8), 1124-1129.

[9]. Liu, J.; Chen, J.; Wang, C.; Qiu, M. Eur. J. Chem. 2010, 1(4), 294‐296.
https://doi.org/10.5155/eurjchem.1.4.294-296.131

[10]. Naik, R.; Borkar, S. D.; Bhat, S.; Acharya, R. J. Ayurveda Integr. Med. Sci. 2017, 6, 85-97.

[11]. Sall, A. B. Valeur nutritive et thérapeutique des pépins de deux espèces de cucurbitacées cultivées au Sénégal, MSc. Thesis, Cheikh Anta DIOP University, Senegal, MSc. Thesis, Cheikh Anta DIOP University, Senegal, N°97, 2017.

[12]. Pene, M. Screening phytochimique et évaluation de l'activité antioxydante des extraits éthanoliques de graines de deux cucurbitacées : Cucurbita pepo et Citrus lanatus, Ph. D Thesis, Cheikh Anta DIOP University, Senegal, N°130, 2019.

[13]. Phillips, K. M.; Ruggio, D. M.; Ashraf-Khorassani, M. J. Agric. Food Chem. 2005, 53(24), 9436-9445.
https://doi.org/10.1021/jf051505h

[14]. Osuagwu, A. N.; Edeoga, H. O. IOSRJAVS 2014, 7(9), 41-44.

[15]. ICC-standard N°105/2. International Association for Cereal Chemistry (ICC), Verlag, Mortiz Schafer, Demold, 2014.

[16]. Method 920. 39, C. Association of Official Analytical Chemists (AOAC), Arlington, 1995.

[17]. ISO 712: 2009. Cereals and cereal products - Determination of moisture content - Reference method, 4th ed., 2009.

[18]. ISO 2171: 1993. Cereals and cereal products - Determination of total ash, 3rd ed., 1993.

[19]. ISO 5498: 1981. Agricultural food products - Determination of crude fibre content - General method, 1st ed., 1981.

[20]. ISO 3961: 2009. Animal and vegetable fats and oils - Determination of iodine value. 4th ed., 2009.

[21]. ISO 3960: 2007. Animal and vegetable fats and oils - Determination of peroxide value (p. 9). 4th ed., 2007.

[22]. ISO 3657: 2013. Animal and vegetable fats and oils - Determination of saponification value. 4th ed., 2009.

[23]. ISO 660: 2009. Animal and vegetable fats and oils - Determination of acid value and acidity. 3rd ed., 2009.

[24]. Salimon, J.; Omar, T. A.; Salih, N. Sci. World J. 2014, 2014, 1-10.
https://doi.org/10.1155/2014/906407

[25]. Harborne, J. B. Phytochemical Methods A Guide to Modern Techniques of Plant Analysis, 978-0-412-57260-9, Springer Netherlands, 1998.

[26]. Kim, M. Y.; Kim, E. J.; Kim, Y.; Choi, C.; Lee, B. Nutr. Res. Pract. 2012, 6(1), 21-27.
https://doi.org/10.4162/nrp.2011.5.6.21

[27]. Oderinde, R.; Tairo, O.; Awofal, D.; Ayediran, D. Riv. Ital. Sostanze Gr. 1990, 67, 259‑261.
https://doi.org/10.1016/0168-9452(90)90251-I

[28]. Sadou, H.; Amoukou, A. J. Soc. Ouest-Afr. Chim. 2002, 14, 115-125.

[29]. Grosso, N. R.; Nepote, V.; Guzman, C. A. J. Agric. Food Chem. 2000, 48, 806‑809.
https://doi.org/10.1021/jf9901744

[30]. Silou, T.; Kissotokene-N, O.; MvoulaTsieri, M.; Ouamba, J. M.; Kiakouama, S. J. Soc. Chim. Tunis. 1990, 2(11), 13-21.

[31]. Petkova, Z.; Antova, G. Cogent Food Agric. 2015, 1(1), 1018779.
https://doi.org/10.1080/23311932.2015.1018779

[32]. Yanty, N. A. M.; Lai, O. M.; Osman, A.; Long, K.; Ghazali, H. M. J. Food Lipids 2008, 15(1), 42-55.
https://doi.org/10.1111/j.1745-4522.2007.00101.x

[33]. Obasi, N. A; Ukadilonu, J.; Eze, E.; Akubugwo, E. I.; Okorie, U. C. Pak. J. Biol. Sci. 2012, 15, 1-9.
https://doi.org/10.3923/pjbs.2012.1.9

[34]. Azhari, S.; Xu, Y. S.; Jiang, Q. X.; Xia, W. S. Grasas y Aceites 2014, 65(1), e008.
https://doi.org/10.3989/gya.074913

[35]. Ibeto, C. N.; Okoye, C. O. B.; Ofoefule, A. U. ISRN Renewable Energy 2012, 2012, 1-5.
https://doi.org/10.5402/2012/621518

[36]. ANSES, France, Actualisation des reperes du PNNS, Retrieved Jun 18, 2020, from https://www.anses.fr/fr/system/files/ NUT2012SA0103Ra-2.pdf.

[37]. Pravina, P.; Sayaji, D.; Avinash, M. Int. J. Pharma Bio Sci. 2013, 4(2), 659-668.

[38]. Rahman, A. H. M. M.; Anisuzzaman, M.; Ahmed, F.; Islam, A. K. M. R.; Naderuzzaman, A. T. M. J. Appl. Sci. Res. 2008, 4(5), 555-558.

[39]. Badri, M. A.; Hamed, A. I. J. Arid Environ. 2000, 44, 347-356.
https://doi.org/10.1006/jare.1999.0585

[40]. Ankita, S.; Parminder, K.; Ruby, G. Int. J. Appl. Biol. Pharm. Technol. 2012, 3(3), 401-409.

[41]. Rajasree R. S.; Sibi, P. I. 2; Femi, F.; Helen, W. Int. J. Pharmacogn. Phytochem. Res. 2016, 8(1), 113-123.

[42]. Wang, D. C.; Pan, H. U.; Deng, X. M.; Xiang, H.; Gao, H. Y.; Cai, H.; Wu, L. J. J. Asian Nat. Prod. Res. 2007, 9(6), 525-529.
https://doi.org/10.1080/10286020600782538

[43]. Santos-Buelga, C.; Scalbert, A. J. Sci. Food Agric. 2000, 80, 1094 1117.
https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>3.0.CO;2-1

[44]. Naczk, M.; Shahidi, F. J. Pharm. Biomed. Anal. 2006, 41, 1523-1542.
https://doi.org/10.1016/j.jpba.2006.04.002

[45]. Jokic, S.; Velic, D.; Bilic, M.; Bucic-Kojic, A.; Planinic, M.; Tomas, S. Czech J. Food Sci. 2010, 28, 206-212.
https://doi.org/10.17221/200/2009-CJFS

Supporting Agencies

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).