European Journal of Chemistry

MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations

Crossmark


Main Article Content

Harshal Dabhane
Suresh Ghotekar
Pawan Tambade
Shreyas Pansambal
Rajeshwari Oza
Vijay Medhane

Abstract

Currently, the size and shape selective synthesis of nanoparticles (NPs) and their varied catalytic applications are gaining significant enthusiasm in the field of nanochemistry. Homogeneous catalysis is crucial due to its inherent benefits like high selectivity and mild reaction conditions. Nevertheless, it endures with serious disadvantages of catalysts and/or product separation/recycles compared to their heterogeneous counterparts restricting their catalytic applications. The utilization of catalysts in the form of nano-size is an elective methodology for the combination of merits of homogeneous and heterogeneous catalysis. Magnesium oxide (MgO) NPs are important as they find applications for catalysis, organic transformation, and synthesis of fine chemicals and organic intermediates. The applications of MgO NPs in diverse organic transformations including oxidation, reduction, epoxidation, condensation, and C-C, C-N, C-O, C-S bond formation in a variety of notable heterocyclic reactions are also discussed. The use of MgO NPs in organic transformation is advantageous as it mitigates the use of ligands; the procurable separation of catalyst for recyclability makes the protocol heterogeneous and monetary. MgO NPs gave efficacious catalytic performance towards the desired products due to high surface area. By considering these efficient merits, scientists have focused their attentions towards stupendous applications of MgO NPs in selective organic transformation. In the current review article, we summarized the synthesis of MgO NPs and numerous characterization techniques, whereas the application section illustrates their utility as a catalyst in several organic transformations. We believe this decisive appraisal will provide imperative details to further advance the application of MgO NPs in selective catalysis.


icon graph This Abstract was viewed 2853 times | icon graph Article PDF downloaded 976 times

How to Cite
(1)
Dabhane, H.; Ghotekar, S.; Tambade, P.; Pansambal, S.; Oza, R.; Medhane, V. MgO Nanoparticles: Synthesis, Characterization, and Applications As a Catalyst for Organic Transformations. Eur. J. Chem. 2021, 12, 86-108.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116 (6), 3722-3811.
https://doi.org/10.1021/acs.chemrev.5b00482

[2]. Ghotekar, S.; Dabhane, H.; Pansambal, S.; Oza, R.; Tambade, P.; Medhane, V. Adv. J. Chem. B 2020, 2 (3), 102-111.

[3]. Sinha, T.; Ahmaruzzaman, Md.; Adhikari, P. P.; Bora, R. ACS Sustainable Chem. Eng. 2017, 5 (6), 4645-4655.
https://doi.org/10.1021/acssuschemeng.6b03114

[4]. Dabhane, H. A.; Ghotekar, S.; Tambade, P. J.; Medhane, V. J. Asian J. Nanosci. Mater. 2020, 3 (4), 291-299.

[5]. Tarannum, N.; Divya, D.; Gautam, Y. K. RSC Adv. 2019, 9 (60), 34926-34948.
https://doi.org/10.1039/C9RA04164H

[6]. Nikam, A.; Pagar, T.; Ghotekar, S.; Pagar, K.; Pansambal, S. J. Chem. Rev. 2019, 1 (3), 154-163.

[7]. Nasrollahzadeh, M.; Ghorbannezhad, F.; Issaabadi, Z.; Sajadi, S. M. Chem. Rec. 2018, 19 (2-3), 601-643.
https://doi.org/10.1002/tcr.201800069

[8]. Bhatte, K. D.; Tambade, P. J.; Dhake, K. P.; Bhanage, B. M. Catalysis Commun. 2010, 11 (15), 1233-1237.
https://doi.org/10.1016/j.catcom.2010.06.011

[9]. Nasrollahzadeh, M.; Sajjadi, M.; Dadashi, J.; Ghafuri, H. Adv. Colloid Interface Sci. 2020, 276, 102103.
https://doi.org/10.1016/j.cis.2020.102103

[10]. Ghotekar, S.; Pansambal, S.; Pawar, S. P.; Pagar, T.; Oza, R.; Bangale, S. SN Appl. Sci. 2019, 1 (11), 1342.
https://doi.org/10.1007/s42452-019-1389-0

[11]. Ahmed, S.; Annu; Ikram, S.; Yudha S., S. J. Photochem. Photobiol. B: Biol. 2016, 161, 141-153.
https://doi.org/10.1016/j.jphotobiol.2016.04.034

[12]. Pansambal, S.; Ghotekar, S.; Shewale, S.; Deshmukh, K.; Barde, N.; Bardapurkar, P. J. Water. Environ. Nanotechnol. 2019, 4 (3), 174-186.

[13]. Pilarska, A. A.; Klapiszewski, Ł.; Jesionowski, T. Powder Techn. 2017, 319, 373-407.
https://doi.org/10.1016/j.powtec.2017.07.009

[14]. Mirtalebi, S. S.; Almasi, H.; Alizadeh Khaledabad, M. Inter. J. Bio. Macromolec. 2019, 128, 848-857.
https://doi.org/10.1016/j.ijbiomac.2019.02.007

[15]. Dobrucka, R. Iran J. Sci. Technol. Trans. Sci. 2016, 42 (2), 547-555.
https://doi.org/10.1007/s40995-016-0076-x

[16]. Wu, C. C.; Cao, X.; Wen, Q.; Wang, Z.; Gao, Q.; Zhu, H. Talanta 2009, 79 (5), 1223-1227.
https://doi.org/10.1016/j.talanta.2009.04.038

[17]. Hashim, A.; Hadi, A. Ukr. J. Phys. 2017, 62 (12), 1050-1056.
https://doi.org/10.15407/ujpe62.12.1050

[18]. Krishnamoorthy, K.; Moon, J. Y.; Hyun, H. B.; Cho, S. K.; Kim, S. J. J. Mater. Chem. 2012, 22 (47), 24610-24617.
https://doi.org/10.1039/c2jm35087d

[19]. Jhansi, K.; Jayarambabu, N.; Reddy, K. P.; Reddy, N. M.; Suvarna, R. P.; Rao, K. V.; Kumar, V. R.; Rajendar, V. Biotech. 2017, 7 (4), 263-274.
https://doi.org/10.1007/s13205-017-0894-3

[20]. Roy, B.; Roy, A. S.; Panda, A. B.; Islam, Sk. M.; Chattopadhyay, A. P. Chem. Select 2016, 1 (15), 4778-4784.
https://doi.org/10.1002/slct.201600380

[21]. Nijalingappa, T. B.; Veeraiah, M. K.; Basavaraj, R. B.; Darshan, G. P.; Sharma, S. C.; Nagabhushana, H. Biocatal. Agricul. Biotechn. 2019, 18, 100991.
https://doi.org/10.1016/j.bcab.2019.01.029

[22]. Raveesha, H. R.; Nayana, S.; Vasudha, D. R.; Begum, J. P. S.; Pratibha, S.; Ravikumara, C. R.; Dhananjaya, N. J. Sci. Adv. Mater. Dev. 2019, 4 (1), 57-65.
https://doi.org/10.1016/j.jsamd.2019.01.003

[23]. Karthik, K.; Dhanuskodi, S.; Prabu Kumar, S.; Gobinath, C.; Sivaramakrishnan, S. Mater. Lett. 2017, 206, 217-220.
https://doi.org/10.1016/j.matlet.2017.07.004

[24]. HiHill, M. R.; Jones, A. W.; Russell, J. J.; Roberts, N. K.; Lamb, R. N. J. Mater. Chem. 2004, 14 (21), 3198 -3202.
https://doi.org/10.1039/b405816j

[25]. Tamilselvi, P.; Yelilarasi, A.; Hema, M.; Anbarasan, R. Nano Bull. 2013, 2 (1), 130106.

[26]. Bian, S.-W.; Baltrusaitis, J.; Galhotra, P.; Grassian, V. H. J. Mater. Chem. 2010, 20 (39), 8705 -8710.
https://doi.org/10.1039/c0jm01261k

[27]. Rao, K. G.; Ashok, C. H.; Rao, K. V.; Chakra, C. S. Inter. J. Sci. Res. 2014, 3 (12), 43-46.

[28]. Li, S.; Zhou, B.; Ren, B.; Xing, L.; Tan, L.; Dong, L.; Li, J. Mater. Lett. 2016, 171, 204-207.
https://doi.org/10.1016/j.matlet.2016.02.048

[29]. Samodi, A.; Rashidi, A.; Marjani, K.; Ketabi, S. Mater. Lett. 2013, 109, 269-274.
https://doi.org/10.1016/j.matlet.2013.07.085

[30]. Yousefi, S.; Ghasemi, B.; Tajally, M.; Asghari, A. J. Alloys Comp. 2017, 711, 521-529.
https://doi.org/10.1016/j.jallcom.2017.04.036

[31]. Darvishi Cheshmeh Soltani, R.; Safari, M.; Mashayekhi, M. Ultrasonics Sonochem. 2016, 30, 123-131.
https://doi.org/10.1016/j.ultsonch.2015.11.018

[32]. Makhluf, S.; Dror, R.; Nitzan, Y.; Abramovich, Y.; Jelinek, R.; Gedanken, A. Adv. Funct. Mater. 2005, 15 (10), 1708-1715.
https://doi.org/10.1002/adfm.200500029

[33]. Hadia, N. M. A.; Mohamed, H. A. H. Mater. Sci. Semicond. Proces. 2015, 29, 238-244.
https://doi.org/10.1016/j.mssp.2014.03.049

[34]. Ding, Y.; Zhang, G.; Wu, H.; Hai, B.; Wang, L.; Qian, Y. Chem. Mater. 2001, 13 (2), 435-440.
https://doi.org/10.1021/cm000607e

[35]. Nemade, K. R.; Waghuley, S. A. Inter. J. Metals 2014, 2014, 1-4.
https://doi.org/10.1155/2014/389416

[36]. Abdul-Ameer, Z. N. Adv. Nat. Appl. Sci. 2016, 10 (12), 72-76.

[37]. Rao, K. V.; Sunandana, C. S. J. Mater. Sci. 2007, 43 (1), 146-154.
https://doi.org/10.1007/s10853-007-2131-7

[38]. Chen, H.; Luo, Z.; Chen, X.; Kang, F. Micro Nano Lett. 2017, 12 (1), 27-29.
https://doi.org/10.1049/mnl.2016.0549

[39]. Subramania, A.; Kumar, G. V.; Priya, A. R. S.; Vasudevan, T. Nanotechn. 2007, 18 (22), 225601.
https://doi.org/10.1088/0957-4484/18/22/225601

[40]. Mageshwari, K.; Mali, S. S.; Sathyamoorthy, R.; Patil, P. S. Powder Technol. 2013, 249, 456-462.
https://doi.org/10.1016/j.powtec.2013.09.016

[41]. Ganguly, A.; Trinh, P.; Ramanujachary, K. V.; Ahmad, T.; Mugweru, A.; Ganguli, A. K. J. Colloid Interface Sci. 2011, 353 (1), 137-142.
https://doi.org/10.1016/j.jcis.2010.09.041

[42]. Phuoc, T. X.; Howard, Bret. H.; Martello, D. V.; Soong, Y.; Chyu, M. K. Optics Lasers Eng. 2008, 46 (11), 829-834.
https://doi.org/10.1016/j.optlaseng.2008.05.018

[43]. Smovzh, D. V.; Sakhapov, S. Z.; Zaikovskii, A. V.; Chernova, S. A.; Novopashin, S. A. Ceramics Inter. 2019, 45 (6), 7338-7343.
https://doi.org/10.1016/j.ceramint.2019.01.017

[44]. Yang, Q.; Sha, J.; Wang, L.; Wang, J.; Yang, D. Mater. Sci. Eng. C 2006, 26 (5-7), 1097-1101.
https://doi.org/10.1016/j.msec.2005.09.082

[45]. Chae, S.; Lee, H.; Pikhitsa, P. V.; Kim, C.; Shin, S.; Kim, D. H.; Choi, M. Powder Technol. 2017, 305, 132-140.
https://doi.org/10.1016/j.powtec.2016.09.057

[46]. Ismail, R. A.; Mousa, A. M.; Shaker, S. S. Mater. Res. Express 2019, 6 (7), 075007.
https://doi.org/10.1088/2053-1591/ab1208

[47]. Essien, E. R.; Atasie, V. N.; Okeafor, A. O.; Nwude, D. O. Int. Nano. Lett. 2019, 10 (1), 43-48.
https://doi.org/10.1007/s40089-019-00290-w

[48]. Ogunyemi, S. O.; Zhang, F.; Abdallah, Y.; Zhang, M.; Wang, Y.; Sun, G.; Qiu, W.; Li, B. Artific. Cells, Nanomed. Biotechnol. 2019, 47 (1), 2230-2239.
https://doi.org/10.1080/21691401.2019.1622552

[49]. Joghee, S.; Ganeshan, P.; Vincent, A.; Hong, S. I. Bio. Nano Sci. 2018, 9 (1), 141-154.
https://doi.org/10.1007/s12668-018-0573-9

[50]. Jeevanandam, J.; Chan, Y. S.; Danquah, M. K. New J. Chem. 2017, 41 (7), 2800-2814.
https://doi.org/10.1039/C6NJ03176E

[51]. Anil Kumar, M. R.; Nagaswarupa, H. P.; Anantharaju, K. S.; Gurushantha, K.; Pratapkumar, C.; Prashantha, S. C.; Shashishekar, T. R.; Nagabhushana, H.; Sharma, S. C.; Vidya, Y. S.; Daruka Prasad, B.; Vivek Babu, C. S.; Vishnu Mahesh, K. R. Mater. Res. Express 2015, 2 (9), 095004.
https://doi.org/10.1088/2053-1591/2/9/095004

[52]. Das, B.; Moumita, S.; Ghosh, S.; Khan, M. I.; Indira, D.; Jayabalan, R.; Tripathy, S. K.; Mishra, A.; Balasubramanian, P. Mater. Sci. Eng. C 2018, 91, 436-444.
https://doi.org/10.1016/j.msec.2018.05.059

[53]. Verma, S. K.; Nisha, K.; Panda, P. K.; Patel, P.; Kumari, P.; Mallick, M. A.; Sarkar, B.; Das, B. Sci. Total Environ. 2020, 713, 136521.
https://doi.org/10.1016/j.scitotenv.2020.136521

[54]. Oladipo, A. A.; Adeleye, O. J.; Oladipo, A. S.; Aleshinloye, A. O. J. Water Process Eng. 2017, 16, 142-148.
https://doi.org/10.1016/j.jwpe.2017.01.003

[55]. Essien, E. R.; Atasie, V. N.; Oyebanji, T. O.; Nwude, D. O. Chem. Pap. 2020, 74 (7), 2101-2109.
https://doi.org/10.1007/s11696-020-01056-x

[56]. John Sushma, N.; Prathyusha, D.; Swathi, G.; Madhavi, T.; Deva Prasad Raju, B.; Mallikarjuna, K.; Kim, H. S. Appl. Nanosci. 2015, 6 (3), 437-44.
https://doi.org/10.1007/s13204-015-0455-1

[57]. Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S. I. Adv. Powder Technol. 2018, 29 (7), 1685-1694.
https://doi.org/10.1016/j.apt.2018.04.003

[58]. Jain, A.; Wadhawan, S.; Kumar, V.; Mehta, S. K. Chem. Phys. Lett. 2018, 706, 53-61.
https://doi.org/10.1016/j.cplett.2018.05.069

[59]. Mohanasrinivasan, V.; Subathra Devi, C.; Mehra, A.; Prakash, S.; Agarwal, A.; Selvarajan, E.; Jemimah Naine, S. Bio. Nano Sci. 2017, 8 (1), 249-253.
https://doi.org/10.1007/s12668-017-0480-5

[60]. Abdel-Aziz, M. M.; Emam, T. M.; Elsherbiny, E. A. Mater. Sci. Eng. C 2020, 109, 110617.
https://doi.org/10.1016/j.msec.2019.110617

[61]. Raliya, R.; Tarafdar, J. C.; Choudhary, K.; Mal, P.; Raturi, A.; Gautam, R.; Singh, S. K. J. Bionanosci. 2014, 8 (1), 34-3.
https://doi.org/10.1166/jbns.2014.1195

[62]. Ibrahem, E.; Thalij, K.; Badawy, A. Biotechnol. J. Intern. 2017, 18 (1), 1-7.
https://doi.org/10.9734/BJI/2017/29534

[63]. El-Sayyad, G. S.; Mosallam, F. M.; El-Batal, A. I. Adv. Powder Technol. 2018, 29 (11), 2616-2625.
https://doi.org/10.1016/j.apt.2018.07.009

[64]. Sutradhar, N.; Sinhamahapatra, A.; Pahari, S. K.; Pal, P.; Bajaj, H. C.; Mukhopadhyay, I.; Panda, A. B. J. Phys. Chem. C 2011, 115 (25), 12308-12316.
https://doi.org/10.1021/jp2022314

[65]. Holzwarth, U.; Gibson, N. Nature Nanotech. 2011, 6 (9), 534-534.
https://doi.org/10.1038/nnano.2011.145

[66]. Yerragunta, V.; Kumaraswamy, T.; Suman, D.; Anusha, V.; Patil, P.; Samhitha, T. Pharma Tutor. 2013, 1 (2), 54-59.

[67]. Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chem. Rev. 2017, 117 (12), 7762-7810.
https://doi.org/10.1021/acs.chemrev.7b00020

[68]. Jung, J.-C.; Lee, Y.; Min, D.; Jung, M.; Oh, S. Molecules 2017, 22 (11), 187.
https://doi.org/10.3390/molecules22111872

[69]. Patil, A. B.; Bhanage, B. M. Catalysis Commun. 2013, 36, 79-83.
https://doi.org/10.1016/j.catcom.2013.03.012

[70]. Bain, S. W.; Ma, Z.; Cui, Z. M.; Zhang, L. S.; Niu, F.; Song, W. G. J. Phys. Chem. C 2008, 112 (30), 11340-11344.
https://doi.org/10.1021/jp802863j

[71]. Jadhav, A. H.; Prasad, D.; Jadhav, H. S.; Nagaraja, B. M.; Seo, J. G. Energy 2018, 160, 635-647.
https://doi.org/10.1016/j.energy.2018.07.036

[72]. Choudary, B. M.; Kantam, M. L.; Ranganath, K. V. S.; Mahendar, K.; Sreedhar, B. J. Am. Chem. Soc. 2004, 126 (11), 3396-3397.
https://doi.org/10.1021/ja038954n

[73]. Roy, S.; Pericas, M. A. Org. Biomol. Chem. 2009, 7 (13), 2669-2677.
https://doi.org/10.1039/b903921j

[74]. Vidruk, R.; Landau, M. V.; Herskowitz, M.; Talianker, M.; Frage, N.; Ezersky, V.; Froumin, N. J. Catal. 2009, 263 (1), 196-204.
https://doi.org/10.1016/j.jcat.2009.02.014

[75]. Choudary, B. M.; Chakrapani, L.; Ramani, T.; Kumar, K. V.; Kantam, M. L. D. Tetrahedron 2006, 62 (41), 9571-9576.
https://doi.org/10.1016/j.tet.2006.07.091

[76]. Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2005, 127 (38), 13167-13171.
https://doi.org/10.1021/ja0440248

[77]. Tajbakhsh, M.; Farhang, M.; Hosseini, A. J. Iran Chem. Soc. 2013, 11 (3), 665-672.
https://doi.org/10.1007/s13738-013-0338-x

[78]. Hosseini-Sarvari, M.; Parhizgar, G. Org. Chem. Res. 2016, 2 (2), 177-191.

[79]. Mashayekh-Salehi, A.; Moussavi, G.; Yaghmaeian, K. Chem. Eng. J. 2017, 310, 157-169.
https://doi.org/10.1016/j.cej.2016.10.096

[80]. Mohammadi, L.; Bazrafshan, E.; Noroozifar, M.; Ansari-Moghaddam, A.; Barahuie, F.; Balarak, D. Water Sci. Technol. 2017, 76 (11), 3054-3068.
https://doi.org/10.2166/wst.2017.479

[81]. Safari, J.; Zarnegar, Z.; Heydarian, M. J. Taibah Univ. Sci. 2013, 7 (1), 17-25.
https://doi.org/10.1016/j.jtusci.2013.03.001

[82]. Ghashang, M.; Mansoor, S. S.; Mohammad Shafiee, M. R.; Kargar, M.; Najafi Biregan, M.; Azimi, F.; Taghrir, H. J. Sulfur Chem. 2016, 37 (4), 377-390.
https://doi.org/10.1080/17415993.2016.1149856

[83]. Brahmachari, G.; Laskar, S. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189 (7-8), 873-888.
https://doi.org/10.1080/10426507.2014.903484

[84]. Kumar, D.; Reddy, V. B.; Mishra, B. G.; Rana, R. K.; Nadagouda, M. N.; Varma, R. S. Tetrahedron 2007, 63 (15), 3093-3097.
https://doi.org/10.1016/j.tet.2007.02.019

[85]. Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. Eur. J. Med. Chem. 2009, 44 (9), 3805-3809.
https://doi.org/10.1016/j.ejmech.2009.04.017

[86]. Karmakar, B.; Nayak, A.; Banerji, J. Tetrahedron Lett. 2012, 53 (37), 5004-5007.
https://doi.org/10.1016/j.tetlet.2012.07.030

[87]. Moghaddam‐Manesh, M.; Ghazanfari, D.; Sheikhhosseini, E.; Akhgar, M. Chem. Select 2019, 4 (31), 9247-9251.
https://doi.org/10.1002/slct.201900935

[88]. Safaei-Ghomi, J.; Eshteghal, F.; Ghasemzadeh, M. A. Acta Chim. Slov. 2014, 61 (4), 703-708.

[89]. Mohammadzadeh, I.; Sheibani, H. Chinese Chem. Lett. 2012, 23 (12), 1327-1330.
https://doi.org/10.1016/j.cclet.2012.10.007

[90]. Seifi, M.; Sheibani, H. Catal. Lett. 2008, 126 (3-4), 275-279.
https://doi.org/10.1007/s10562-008-9603-5

[91]. Dinparast, L.; Valizadeh, H. Iranian J. Org. Chem. 2014, 6 (3), 1341-1345.

[92]. Safaei-Ghomi, J.; Babaei, P.; Shahbazi-Alavi, H.; Zahedi, S. J. Saudi Chem. Soc. 2017, 21 (8), 929-937.
https://doi.org/10.1016/j.jscs.2016.01.003

[93]. Gandhi, D.; Agarwal, S. J. Heterocyclic Chem. 2018, 55 (12), 2977-2984.
https://doi.org/10.1002/jhet.3384

[94]. Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. New J. Chem. 2018, 42 (1), 184-19.
https://doi.org/10.1039/C7NJ03742B

[95]. Mirzaei, H.; Davoodnia, A. Chinese J. Catal. 2012, 33 (9-10), 1502-1507.
https://doi.org/10.1016/S1872-2067(11)60431-2

[96]. Beyzaei, H.; Kooshki, S.; Aryan, R.; Zahedi, M. M.; Samzadeh-Kermani, A.; Ghasemi, B.; Moghaddam-Manesh, M. Appl. Biochem. Biotechnol. 2017, 184 (1), 291-302.
https://doi.org/10.1007/s12010-017-2544-y

[97]. Naeimi, H.; Alishahi, N. J. Exp. Nanosci. 2013, 10 (3), 222-234.
https://doi.org/10.1080/17458080.2013.822575

[98]. Beyzaei, H.; Aryan, R.; Molashahi, H.; Zahedi, M. M.; Samzadeh-Kermani, A.; Ghasemi, B.; Moghaddam-Manesh, M. J. Iran Chem. Soc. 2017, 14 (5), 1023-1031.
https://doi.org/10.1007/s13738-017-1052-x

[99]. Baharfar, R.; Shariati, N. C. R. Chimie 2014, 17 (5), 413-419.
https://doi.org/10.1016/j.crci.2013.08.010

[100]. Shariati, N.; Baharfar, R. J. Chinese Chem. Soc. 2013, 61 (3), 337-340.
https://doi.org/10.1002/jccs.201300425

[101]. Naeimi, H.; Rashid, Z.; Zarnani, A. H.; Ghahremanzadeh, R. J. Nanopart. Res. 2014, 16 (5), 2416.
https://doi.org/10.1007/s11051-014-2416-0

[102]. Kiyani, H.; Ghorbani, F. Res. Chem. Intermed. 2016, 42 (9), 6831-6844.
https://doi.org/10.1007/s11164-016-2498-7

[103]. Hamood Saleh Azzam, S.; Chandrappa, G. T.; Afzal Pasha, M. Lett. Org. Chem. 2013, 10 (4), 283-290.
https://doi.org/10.2174/1570178611310040010

[104]. Das, V. K.; Devi, R. R.; Thakur, A. J. Appl. Catal. A 2013, 456, 118-125.
https://doi.org/10.1016/j.apcata.2013.02.016

[105]. Gajengi, A. L.; Sasaki, T.; Bhanage, B. M. Adv. Powder Technol. 2017, 28 (4), 1185-1192.
https://doi.org/10.1016/j.apt.2017.02.004

[106]. Babaie, M.; Sheibani, H. Arabian J. Chem. 2011, 4 (2), 159-162.
https://doi.org/10.1016/j.arabjc.2010.06.032

[107]. Sojoudi, M.; Mokhtary, M. Iran. Chem. Commun. 2018, 6 (2), 125-133.

[108]. Safaei-Ghomi, J.; Zahedi, S.; Javid, M.; Ghasemzadeh, M. A. J. Nanostruc. 2015, 5 (2), 153-160.

[109]. Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125 (8), 2020-2021.
https://doi.org/10.1021/ja0211757

[110]. Wang, F.; Ta, N.; Shen, W. Appl. Catal. A 2014, 475, 76-81.
https://doi.org/10.1016/j.apcata.2014.01.026

[111]. Zarnegar, Z.; Safari, J. J. Exp. Nanosci. 2014, 10 (9), 651-661.
https://doi.org/10.1080/17458080.2013.869842

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).