European Journal of Chemistry

Rietveld refinement of the low temperature crystal structures of Cs2XSi5O12 (X = Cu, Cd and Zn)

Crossmark


Main Article Content

Anthony Martin Thomas Bell

Abstract

The synthetic leucite silicate framework mineral analogues Cs2XSi5O12 (X = Cu, Cd, Zn) were prepared by high-temperature solid-state synthesis. The results of Rietveld refinement, using 18 keV synchrotron X-ray powder diffraction data collected at low temperatures (8K X = Cu, Zn; 10K X = Cd) show that the title compounds crystallize in the space group Pbca and are isostructural with the ambient temperature structures of these analogues. The structures consist of tetrahedrally coordinated SiO4 and XO4 sharing corners to form a partially substituted silicate framework. Extraframework Cs cations sit in channels in the framework. All atoms occupy the 8c general position for this space group. In these refined structures, silicon and X atoms are ordered onto separate tetrahedrally coordinated sites (T-sites).


icon graph This Abstract was viewed 1317 times | icon graph Article PDF downloaded 544 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Bell, A. M. T. Rietveld Refinement of the Low Temperature Crystal Structures of Cs2XSi5O12 (X = Cu, Cd and Zn). Eur. J. Chem. 2021, 12, 60-63.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Mazzi, F.; Galli, E.; Gottardi, G. Am. Mineral. 1976, 61 (1-2), 108-115.

[2]. Dimitrijevic, R.; Dondur, V.; Petranovic, N. J. Solid State Chem. 1991, 95 (2), 335-345.
https://doi.org/10.1016/0022-4596(91)90114-W

[3]. Gatta, G. D.; Rotiroti, N.; Fisch, M.; Kadiyski, M.; Armbruster, T. Phys. Chem. Minerals 2008, 35 (9), 521-533.
https://doi.org/10.1007/s00269-008-0246-2

[4]. Bell, A. M. T.; Henderson, C. M. B. J. Solid State Chem. 2020, 284, 121142.
https://doi.org/10.1016/j.jssc.2019.121142

[5]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. C 1994, 50 (7), 984-986.
https://doi.org/10.1107/S0108270194002039

[6]. Bell, A. M. T.; Henderson, C. M. B.; Redfern, S. A. T.; Cernik, R. J.; Champness, P. E.; Fitch, A. N.; Kohn, S. C. Acta Crystallogr. B 1994, 50 (1), 31-41.
https://doi.org/10.1107/S0108768193008754

[7]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. B 2018, 74 (3), 274-286.
https://doi.org/10.1107/S2052520618004092

[8]. Bell, A. M. T.; Redfern, S. A. T.; Henderson, C. M. B.; Kohn, S. C. Acta Crystallogr. B 1994, 50 (5), 560-566.
https://doi.org/10.1107/S0108768194003393

[9]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. C 1996, 52 (9), 2132-2139.
https://doi.org/10.1107/S0108270196003162

[10]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. B 2009, 65 (4), 435-444.
https://doi.org/10.1107/S0108768109024860

[11]. Bell, A. M. T.; Knight, K. S.; Henderson, C. M. B.; Fitch, A. N. Acta Crystallogr. B 2010, 66 (1), 51-59.
https://doi.org/10.1107/S0108768109054895

[12]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. E 2016, 72 (2), 249-252.
https://doi.org/10.1107/S2056989016001390

[13]. Bell, A. M. T.; Henderson, C. M. B. Powder Diffr. 2019, 34 (S1), S2-S7.
https://doi.org/10.1017/S0885715619000071

[14]. Kohn, S. C.; Henderson, C. M. B.; Dupree, R. Phys. Chem. Minerals 1994, 21 (3), 176-190.
https://doi.org/10.1007/BF00203148

[15]. Redfern, S. A. T.; Henderson, C. M. B. Am. Mineral. 1996, 81, 369-374.
https://doi.org/10.2138/am-1996-3-411

[16]. Bell, A. M. T.; Henderson, C. M. B. Mineral. Mag. 2012, 76 (5), 1257-1280.
https://doi.org/10.1180/minmag.2012.076.5.12

[17]. Knapp, M.; Baehtz, C.; Ehrenberg, H.; Fuess, H. J. Synchrotron Radiat. 2004, 11 (4), 328-334.
https://doi.org/10.1107/S0909049504009367

[18]. Knapp, M.; Joco, V.; Baehtz, C.; Brecht, H. H.; Berghaeuser, A.; Ehrenberg, H.; von Seggern, H.; Fuess, H. Nucl. Instrum. Methods Phys. Res. A 2004, 521 (2-3), 565-570.
https://doi.org/10.1016/j.nima.2003.10.100

[19]. Rietveld, H. M. J. Appl. Cryst. 1969, 2 (2), 65-71.
https://doi.org/10.1107/S0021889869006558

[20]. Rodriguez-Carvajal, J. Physica B: Condensed Matter 1993, 192 (1-2), 55-69.
https://doi.org/10.1016/0921-4526(93)90108-I

[21]. International Tables for X-ray Crystallography, volume III, Table 4.1.1. International Union of Crystallography, Pub. by Kynoch Press, 1975.

[22]. Momma, K.; Izumi, F. J. Appl. Cryst. 2008, 41 (3), 653-658.
https://doi.org/10.1107/S0021889808012016

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).