European Journal of Chemistry

A review on polymer nanocomposite hydrogel preparation, characterization, and applications

Crossmark


Main Article Content

Md. Arif Roman Azady
Sony Ahmed
Md. Shafiul Islam

Abstract

Nanocomposite hydrogels, made by incorporating nanoparticles into a hydrogel matrix, have been developed to fulfill the need for materials with enhanced and predictable mechanical properties and functionality. This review breaks down the process of preparing and characterizing nanocomposite hydrogels and looks at the various applications they can be used for. Through careful selection of the nanoparticle and hydrogel types, as well as the preparation method, the degree of crosslinking and the strength of the intermolecular interactions between the nanoparticles and the hydrogel matrix can be controlled. Once the nanomaterial is prepared, the morphology, gel content, thermal stability, and mechanical properties are investigated. By varying the concentrations of nanoparticles within the hydrogel matrix, nanocomposite hydrogels with optimal functionality and mechanical properties are produced. The optimized nanomaterial can then be used for its intended application(s); here the focus is on applications in the biomedical and dye adsorption fields. With further research, it is predicted that nanocomposite hydrogels will fulfill their potential to be used in practical, everyday applications.


icon graph This Abstract was viewed 2036 times | icon graph Article PDF downloaded 668 times

How to Cite
(1)
Azady, M. A. R.; Ahmed, S.; Islam, M. S. A Review on Polymer Nanocomposite Hydrogel Preparation, Characterization, and Applications. Eur. J. Chem. 2021, 12, 329-339.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Yang, Y.; Han, S.; Fan, Q.; Ugbolue, S. C. Text. Res. J. 2005, 75 (8), 622-627.
https://doi.org/10.1177/0040517505053948

[2]. Li, S.; Zhang, H.; Feng, J.; Xu, R.; Liu, X. Desalination 2011, 280 (1-3), 95-102.
https://doi.org/10.1016/j.desal.2011.06.056

[3]. Janovak, L.; Varga, J.; Kemeny, L.; Dekany, I. Appl. Clay Sci. 2009, 43 (2), 260-270.
https://doi.org/10.1016/j.clay.2008.08.002

[4]. Bahram, M.; Mohseni, N.; Moghtader, M. An Introduction to Hydrogels and Some Recent Applications. In Emerging Concepts in Analysis and Applications of Hydrogels; InTech, 2016. https://www.intechopen.com/books/emerging-concepts-in-analysis-and-applications-of-hydrogels/an-introduction-to-hydrogels-and-some-recent-applications (accessed January 10, 2020).
https://doi.org/10.5772/64301

[5]. Abou Taleb, M. F.; Hegazy, D. E.; Ismail, S. A. Carbohydr. Polym. 2012, 87 (3), 2263-2269.
https://doi.org/10.1016/j.carbpol.2011.10.058

[6]. Caló, E.; Khutoryanskiy, V. V. Eur. Polym. J. 2015, 65, 252-267.
https://doi.org/10.1016/j.eurpolymj.2014.11.024

[7]. Wang, H.; Heilshorn, S. C. Adv. Mater. 2015, 27 (25), 3717-3736.
https://doi.org/10.1002/adma.201501558

[8]. Li, J.; Mooney, D. J. Nat. Rev. Mater. 2016, 1 (12), 16071, 1-17.
https://doi.org/10.1038/natrevmats.2016.71

[9]. Qin, M.; Sun, M.; Hua, M.; He, X. Curr. Opin. Solid State Mater. Sci. 2019, 23 (1), 13-27.
https://doi.org/10.1016/j.cossms.2018.10.001

[10]. Xue, Z.; Wang, S.; Lin, L.; Chen, L.; Liu, M.; Feng, L.; Jiang, L. Adv. Mater. 2011, 23 (37), 4270-4273.
https://doi.org/10.1002/adma.201102616

[11]. Bohidar, H. B.; Dubin, P.; Osada, Y. Polymer Gels: Fundamentals and Applications; American Chemical Society, 2002.
https://doi.org/10.1021/bk-2002-0833

[12]. Rama Rao, G. V.; Krug, M. E.; Balamurugan, S.; Xu, H.; Xu, Q.; López, G. P. Chem. Mater. 2002, 14 (12), 5075-5080.
https://doi.org/10.1021/cm020627b

[13]. Guilherme, M. R.; Silva, R.; Girotto, E. M.; Rubira, A. F.; Muniz, E. C. Polymer (Guildf.) 2003, 44 (15), 4213-4219.
https://doi.org/10.1016/S0032-3861(03)00370-7

[14]. Liu, Y.; Xie, J.-J.; Zhang, X.-Y. J. Appl. Polym. Sci. 2003, 90 (13), 3481-3487.
https://doi.org/10.1002/app.13003

[15]. Ketelson, H. A.; Meadows, D. L.; Stone, R. P. Colloids Surf. B Biointerfaces 2005, 40 (1), 1-9.
https://doi.org/10.1016/j.colsurfb.2004.07.010

[16]. Bandla, M.; Abbavaram, B. R.; Kokkarachedu, V.; Sadiku, R. E. Polym. Compos. 2017, 38, E16-E23.
https://doi.org/10.1002/pc.23963

[17]. Boyko, V.; Pich, A.; Lu, Y.; Richter, S.; Arndt, K.-F.; Adler, H.-J. P. Polymer (Guildf.) 2003, 44 (26), 7821-7827.
https://doi.org/10.1016/j.polymer.2003.09.037

[18]. Kuckling, D.; Ivanova, I. G.; Adler, H.-J. P.; Wolff, T. Polymer (Guildf.) 2002, 43 (6), 1813-1820.
https://doi.org/10.1016/S0032-3861(01)00766-2

[19]. Vo, C. D.; Kuckling, D.; Adler, H.-J. P.; Schnhoff, M. Colloid Polym. Sci. 2002, 280 (5), 400-409.
https://doi.org/10.1007/s003960100559

[20]. Zhang, X.-Z.; Zhuo, R.-X. Macromol. Rapid Commun. 1999, 20 (4), 229-231.
https://doi.org/10.1002/(SICI)1521-3927(19990401)20:4<229::AID-MARC229>3.0.CO;2-N

[21]. Serizawa, T.; Wakita, K.; Akashi, M. Macromolecules 2002, 35 (1), 10-12.
https://doi.org/10.1021/ma011362+

[22]. Zhang, X.-Z.; Yang, Y.-Y.; Chung, T.-S.; Ma, K.-X. Langmuir 2001, 17 (20), 6094-6099.
https://doi.org/10.1021/la010105v

[23]. Zhang, X.-Z.; Zhuo, R.-X. Colloid Polym. Sci. 1999, 277 (11), 1079-1082.
https://doi.org/10.1007/s003960050493

[24]. Van Durme, K.; Van Mele, B.; Loos, W.; Du Prez, F. E. Polymer (Guildf.) 2005, 46 (23), 9851-9862.
https://doi.org/10.1016/j.polymer.2005.08.032

[25]. Zhang, X.-Z.; Zhuo, R.-X. Eur. Polym. J. 2000, 36 (3), 643-645.
https://doi.org/10.1016/S0014-3057(99)00089-0

[26]. Bin Imran, A.; Esaki, K.; Gotoh, H.; Seki, T.; Ito, K.; Sakai, Y.; Takeoka, Y. Nat. Commun. 2014, 5 (1), 5124.
https://doi.org/10.1038/ncomms6124

[27]. Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Nature 2012, 489 (7414), 133-136.
https://doi.org/10.1038/nature11409

[28]. Okumura, Y.; Ito, K. Adv. Mater. 2001, 13 (7), 485-487.
https://doi.org/10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T

[29]. Merino, S.; Martín, C.; Kostarelos, K.; Prato, M.; Vázquez, E. ACS Nano 2015, 9 (5), 4686-4697.
https://doi.org/10.1021/acsnano.5b01433

[30]. Wu, Y.; Zhou, Z.; Fan, Q.; Chen, L.; Zhu, M. J. Mater. Chem. 2009, 19 (39), 7340-7346.
https://doi.org/10.1039/b909125d

[31]. Lin, J.; Xu, S.; Shi, X.; Feng, S.; Wang, J. Polym. Adv. Technol. 2009, 20 (7), 645-649.
https://doi.org/10.1002/pat.1322

[32]. Tang, Q.; Sun, X.; Li, Q.; Wu, J.; Lin, J.; Huang, M. E-polymers 2009, 9 (1).
https://doi.org/10.1515/epoly.2009.9.1.1087

[33]. Fleischmann, C.; Gopez, J.; Lundberg, P.; Ritter, H.; Killops, K. L.; Hawker, C. J.; Klinger, D. Polym. Chem. 2015, 6 (11), 2029-2037.
https://doi.org/10.1039/C4PY01766H

[34]. Abdurrahmanoglu, S.; Can, V.; Okay, O. J. Appl. Polym. Sci. 2008, 109 (6), 3714-3724.
https://doi.org/10.1002/app.28607

[35]. Mansoori, Y.; Salemi, H. Polym. Sci. Ser. B 2015, 57 (2), 167-179.
https://doi.org/10.1134/S1560090415020086

[36]. Chen, T.; Hou, K.; Ren, Q.; Chen, G.; Wei, P.; Zhu, M. Macromol. Rapid Commun. 2018, 39 (21), e1800337.
https://doi.org/10.1002/marc.201800337

[37]. Haraguchi, K.; Takehisa, T. Adv. Mater. 2002, 14 (16), 1120-1124.
https://doi.org/10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9

[38]. Liu, R.; Liang, S.; Tang, X.-Z.; Yan, D.; Li, X.; Yu, Z.-Z. J. Mater. Chem. 2012, 22 (28), 14160-14167.
https://doi.org/10.1039/c2jm32541a

[39]. Sun, G.; Li, Z.; Liang, R.; Weng, L.-T.; Zhang, L. Nat. Commun. 2016, 7 (1), 12095.
https://doi.org/10.1038/ncomms12095

[40]. Hu, Z.; Chen, G. Adv. Mater. 2014, 26 (34), 5950-5956.
https://doi.org/10.1002/adma.201400179

[41]. Binnemans, K. Chem. Rev. 2009, 109 (9), 4283-4374.
https://doi.org/10.1021/cr8003983

[42]. Bünzli, J.-C. G. Chem. Rev. 2010, 110 (5), 2729-2755.
https://doi.org/10.1021/cr900362e

[43]. Liu, F.; Carlos, L. D.; Ferreira, R. A. S.; Rocha, J.; Gaudino, M. C.; Robitzer, M.; Quignard, F. Biomacromolecules 2008, 9 (7), 1945-1950.
https://doi.org/10.1021/bm8002122

[44]. Qiao, Y.; Lin, Y.; Zhang, S.; Huang, J. Chemistry 2011, 17 (18), 5180-5187.
https://doi.org/10.1002/chem.201003255

[45]. Schexnailder, P.; Schmidt, G. Colloid Polym. Sci. 2009, 287 (1), 1-11.
https://doi.org/10.1007/s00396-008-1949-0

[46]. Gaharwar, A. K.; Peppas, N. A.; Khademhosseini, A. Biotechnol. Bioeng. 2014, 111 (3), 441-453.
https://doi.org/10.1002/bit.25160

[47]. Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J. Adv. Sci. (Weinh.) 2015, 2 (1-2), 1400010.
https://doi.org/10.1002/advs.201400010

[48]. Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. Adv. Mater. 2017, 29. 1700321.
https://doi.org/10.1002/adma.201700321

[49]. Zhang, X.; Pint, C. L.; Lee, M. H.; Schubert, B. E.; Jamshidi, A.; Takei, K.; Ko, H.; Gillies, A.; Bardhan, R.; Urban, J. J.; Wu, M.; Fearing, R.; Javey, A. Nano Lett. 2011, 11 (8), 3239-3244.
https://doi.org/10.1021/nl201503e

[50]. Wang, W.; Chen, J.; Li, M.; Jia, H.; Han, X.; Zhang, J.; Zou, Y.; Tan, B.; Liang, W.; Shang, Y.; Xu, Q.; A, S.; Wang, W.; Mao, J.; Gao, X.; Fan, G.; Liu, W. ACS Appl. Mater. Interfaces 2019, 11 (3), 2880-2890.
https://doi.org/10.1021/acsami.8b20158

[51]. Van Tran, V.; Park, D.; Lee, Y.-C. Environ. Sci. Pollut. Res. Int. 2018, 25 (25), 24569-24599.
https://doi.org/10.1007/s11356-018-2605-y

[52]. Tang, S.; Zeng, Y.; Wang, X. Polym. Eng. Sci. 2010, 50 (11), 2252-2257.
https://doi.org/10.1002/pen.21767

[53]. Abdullah, Z. W.; Dong, Y.; Davies, I. J.; Barbhuiya, S. Polym. Plast. Technol. Eng. 2017, 56 (12), 1307-1344.
https://doi.org/10.1080/03602559.2016.1275684

[54]. Kumar, D.; Jat, S. K.; Khanna, P. K.; Vijayan, N.; Banerjee, S. Int. J. Green Nanotech. 2012, 4 (3), 408-416.
https://doi.org/10.1080/19430892.2012.738509

[55]. Aslam, M.; Kalyar, M. A.; Raza, Z. A. J. Mater. Sci.: Mater. Electron. 2017, 28 (18), 13401-13413.
https://doi.org/10.1007/s10854-017-7177-y

[56]. Godovsky, D. Y. Device Applications of Polymer-Nanocomposites. In Biopolymers · PVA Hydrogels, Anionic Polymerisation Nanocomposites; Springer Berlin Heidelberg: Berlin, Heidelberg, 2000; pp 163-205.
https://doi.org/10.1007/3-540-46414-X_4

[57]. Ruiz-Palomero, C.; Soriano, M. L.; Benítez-Martínez, S.; Valcárcel, M. Sens. Actuators B Chem. 2017, 245, 946-953.
https://doi.org/10.1016/j.snb.2017.02.006

[58]. Sui, B.; Li, Y.; Yang, B. Chin. Chem. Lett. 2020, 31 (6), 1443-1447.
https://doi.org/10.1016/j.cclet.2019.08.023

[59]. Konwar, A.; Gogoi, N.; Majumdar, G.; Chowdhury, D. Carbohydr. Polym. 2015, 115, 238-245.
https://doi.org/10.1016/j.carbpol.2014.08.021

[60]. Martín-Pacheco, A.; Del Río Castillo, A. E.; Martín, C.; Herrero, M. A.; Merino, S.; García Fierro, J. L.; Díez-Barra, E.; Vázquez, E. ACS Appl. Mater. Interfaces 2018, 10 (21), 18192-18201.
https://doi.org/10.1021/acsami.8b02162

[61]. Shao, H.; Wang, C.-F.; Chen, S.; Xu, C. J. Polym. Sci. A Polym. Chem. 2014, 52 (7), 912-920.
https://doi.org/10.1002/pola.27086

[62]. Hu, M.; Gu, X.; Hu, Y.; Wang, T.; Huang, J.; Wang, C. Macromolecules 2016, 49 (8), 3174-3183.
https://doi.org/10.1021/acs.macromol.5b02352

[63]. Guo, J.; Zhou, M.; Yang, C. Sci. Rep. 2017, 7 (1), 7902.
https://doi.org/10.1038/s41598-017-08353-8

[64]. Wang, L.; Li, B.; Xu, F.; Li, Y.; Xu, Z.; Wei, D.; Feng, Y.; Wang, Y.; Jia, D.; Zhou, Y. Biomaterials 2017, 145, 192-206.
https://doi.org/10.1016/j.biomaterials.2017.08.039

[65]. Rezazadeh, B.; Sirousazar, M.; Abbasi‐Chianeh, V.; Kheiri, F. J. Appl. Polym. Sci. 2020, 137 (18), 48631.
https://doi.org/10.1002/app.48631

[66]. Huang, Q.; Du, C.; Hua, Y.; Zhang, J.; Peng, R.; Yao, X. BioResources. 2019, 14, 7134-7147.

[67]. Liao, G.; Hu, J.; Chen, Z.; Zhang, R.; Wang, G.; Kuang, T. Front. Chem. 2018, 6, 450.
https://doi.org/10.3389/fchem.2018.00450

[68]. Liu, Y.; Gao, T.; Xiao, H.; Guo, W.; Sun, B.; Pei, M.; Zhou, G. Electrochim. Acta 2017, 229, 239-252.
https://doi.org/10.1016/j.electacta.2017.01.142

[69]. Sheng, K.-X.; Xu, Y.-X.; Li, C.; Shi, G.-Q. New Carbon Mater. 2011, 26 (1), 9-15.
https://doi.org/10.1016/S1872-5805(11)60062-0

[70]. Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. ACS Nano 2012, 6 (3), 2693-2703.
https://doi.org/10.1021/nn300082k

[71]. Tungkavet, T.; Seetapan, N.; Pattavarakorn, D.; Sirivat, A. Polymer (Guildf.) 2015, 70, 242-251.
https://doi.org/10.1016/j.polymer.2015.06.027

[72]. Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L. Appl. Phys. Lett. 2002, 80 (24), 4609-4611.
https://doi.org/10.1063/1.1481536

[73]. Pardo-Yissar, V.; Gabai, R.; Shipway, A. N.; Bourenko, T.; Willner, I. Adv. Mater. 2001, 13 (17), 1320-1323.
https://doi.org/10.1002/1521-4095(200109)13:17<1320::AID-ADMA1320>3.0.CO;2-8

[74]. Liu, M.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Aida, T. Nat. Commun. 2013, 4 (1), 2029.
https://doi.org/10.1038/ncomms3029

[75]. Khoylou, F.; Naimian, F. Radiat. Phys. Chem. Oxf. Engl. 1993 2009, 78 (3), 195-198.
https://doi.org/10.1016/j.radphyschem.2008.11.008

[76]. Ranjha, N. M.; Ayub, G.; Naseem, S.; Ansari, M. T. J. Mater. Sci. Mater. Med. 2010, 21 (10), 2805-2816.
https://doi.org/10.1007/s10856-010-4134-1

[77]. Abd Alla, S. G.; Nizam El-Din, H. M.; El-Naggar, A. W. M. Eur. Polym. J. 2007, 43 (7), 2987-2998.
https://doi.org/10.1016/j.eurpolymj.2007.04.016

[78]. Park, H.; Guo, X.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.; Kasper, F. K.; Mikos, A. G. Biomacromolecules 2009, 10 (3), 541-546.
https://doi.org/10.1021/bm801197m

[79]. Omidian, H.; Hasherni, S. A.; Askari, F.; Nafisi, S. Iranian J. Polymer Sci. Tech. 1994, 3 (2), 115-119.

[80]. Tighe, B. J. Br. Polym. J. 1986, 18 (1), 8-13.
https://doi.org/10.1002/pi.4980180104

[81]. Mohammadi, S.; Vafaie Sefti, M.; Baghban Salehi, M.; Mousavi Moghadam, A.; Rajaee, S.; Naderi, H. Asia-Pac. J. Chem. Eng. 2015, 10 (5), 743-753.
https://doi.org/10.1002/apj.1912

[82]. Aalaie, J.; Vasheghani-Farahani, E.; Rahmatpour, A.; Semsarzadeh, M. A. Eur. Polym. J. 2008, 44 (7), 2024-2031.
https://doi.org/10.1016/j.eurpolymj.2008.04.031

[83]. Wong, R. S. H.; Ashton, M.; Dodou, K. Pharmaceutics 2015, 7 (3), 305-319.
https://doi.org/10.3390/pharmaceutics7030305

[84]. Kurecic, M.; Smole, M. S. Nanocomposites-New Trends and Developments; IntechOpen, 2012.

[85]. Sirousazar, M.; Kokabi, M.; Hassan, Z. M.; Bahramian, A. R. J. Macromol. Sci. Phys. 2012, 51 (8), 1583-1595.
https://doi.org/10.1080/00222348.2012.656010

[86]. Hosseinzadeh, H. Pol. J. Chem. Technol. 2015, 17 (2), 70-76.
https://doi.org/10.1515/pjct-2015-0032

[87]. Wang, H.; Li, J.; Ding, N.; Zeng, X.; Tang, X.; Sun, Y.; Lei, T.; Lin, L. Chem. Eng. J. 2020, 386 (124021), 124021.
https://doi.org/10.1016/j.cej.2020.124021

[88]. Bakravi, A.; Ahamadian, Y.; Hashemi, H.; Namazi, H. Adv. Polym. Technol. 2018, 37 (7), 2625-2635.
https://doi.org/10.1002/adv.21938

[89]. Franco, M. K. K. D.; Araújo, D. R. de; Paula, E. de; Cavalcanti, L.; Yokaichiya, F. X‐ray Scattering Techniques Applied in the Development of Drug Delivery Systems. In X-ray Scattering; InTech, 2017. https://www.intechopen.com/books/x-ray-scattering/x-ray-scattering-techniques-applied-in-the-development-of-drug-delivery-systems (accessed January 10, 2020).
https://doi.org/10.5772/65326

[90]. Liu, M.; Li, W.; Rong, J.; Zhou, C. Colloid Polym. Sci. 2012, 290 (10), 895-905.
https://doi.org/10.1007/s00396-012-2588-z

[91]. Kazanskii, K. S.; Dubrovskii, S. A. Chemistry and Physics of "Agricultural" Hydrogels. In Polyelectrolytes Hydrogels Chromatographic Materials; Springer Berlin Heidelberg: Berlin, Heidelberg, 1992; pp 97-133.
https://doi.org/10.1007/3-540-55109-3_3

[92]. Maitland, G. C. Curr. Opin. Colloid Interface Sci. 2000, 5 (5-6), 301-311.
https://doi.org/10.1016/S1359-0294(00)00069-8

[93]. Calvert, P. Adv. Mater. 2009, 21 (7), 743-756.
https://doi.org/10.1002/adma.200800534

[94]. Drury, J. L.; Mooney, D. J. Biomaterials 2003, 24 (24), 4337-4351.
https://doi.org/10.1016/S0142-9612(03)00340-5

[95]. Yi, J.-Z.; Zhang, L.-M. Bioresour. Technol. 2008, 99 (7), 2182-2186.
https://doi.org/10.1016/j.biortech.2007.05.028

[96]. Pang, J.; Wu, M.; Liu, X.; Wang, B.; Yang, J.; Xu, F.; Ma, M.; Zhang, X. Sci. Rep. 2017, 7 (1), 13233.
https://doi.org/10.1038/s41598-017-13374-4

[97]. Haraguchi, K.; Takehisa, T.; Fan, S. Macromolecules 2002, 35 (27), 10162-10171.
https://doi.org/10.1021/ma021301r

[98]. Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Macromolecules 2003, 36 (15), 5732-5741.
https://doi.org/10.1021/ma034366i

[99]. Choi, Y.; Simonsen, J. J. Nanosci. Nanotechnol. 2006, 6 (3), 633-639.
https://doi.org/10.1166/jnn.2006.132

[100]. Zhou, C.; Wu, Q. Colloids Surf. B Biointerfaces 2011, 84 (1), 155-162.
https://doi.org/10.1016/j.colsurfb.2010.12.030

[101]. Coats, A. W.; Redfern, J. P. Analyst 1963, 88 (1053), 906-924.
https://doi.org/10.1039/an9638800906

[102]. Thomas, S.; Thomas, R.; Zachariah, A. K.; Kumar, R. Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, 1st ed.; Elsevier, 2017.

[103]. Thakur, S.; Arotiba, O. Adsorp. Sci. Technol. 2018, 36 (1-2), 458-477.
https://doi.org/10.1177/0263617417700636

[104]. Kong, W.; Chang, M.; Zhang, C.; Liu, X.; He, B.; Ren, J. Polymers (Basel) 2019, 11 (4), 621.
https://doi.org/10.3390/polym11040621

[105]. Mohsen, M.; 1 Physics Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt; Gomaa, E.; Ahmed Mazaid, N.; Mohammed, R. AIMS Mater. Sci. 2017, 4 (5), 1122-1139.
https://doi.org/10.3934/matersci.2017.5.1122

[106]. Aydınoglu, D.; Akgül, Ö.; Bayram, V.; Şen, S. Polym. Plast. Technol. Eng. 2014, 53 (16), 1706-1722.
https://doi.org/10.1080/03602559.2014.919656

[107]. Tong, D. S.; Wu, C. W.; Adebajo, M. O.; Jin, G. C.; Yu, W. H.; Ji, S. F.; Zhou, C. H. Appl. Clay Sci. 2018, 161, 256-264.
https://doi.org/10.1016/j.clay.2018.02.017

[108]. Babaladimath, G.; Badalamoole, V. Polym. Bull. (Berl.) 2019, 76 (8), 4215-4236.
https://doi.org/10.1007/s00289-018-2584-7

[109]. Pal, S.; Ghorai, S.; Das, C.; Samrat, S.; Ghosh, A.; Panda, A. B. Ind. Eng. Chem. Res. 2012, 51 (48), 15546-15556.
https://doi.org/10.1021/ie301134a

[110]. Chen, L.; Li, Y.; Du, Q.; Wang, Z.; Xia, Y.; Yedinak, E.; Lou, J.; Ci, L. Carbohydr. Polym. 2017, 155, 345-353.
https://doi.org/10.1016/j.carbpol.2016.08.047

[111]. Moritz, M.; Geszke-Moritz, M. Chem. Eng. J. 2013, 228, 596-613.
https://doi.org/10.1016/j.cej.2013.05.046

[112]. Bhowmick, S.; Koul, V. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 109-119.
https://doi.org/10.1016/j.msec.2015.10.003

[113]. Abdel-Halim, E. S.; Al-Deyab, S. S. Int. J. Biol. Macromol. 2014, 69, 456-463.
https://doi.org/10.1016/j.ijbiomac.2014.06.002

[114]. Wang, J.; Banerji, S.; Menegazzo, N.; Peng, W.; Zou, Q.; Booksh, K. S. Talanta 2011, 86, 133-141.
https://doi.org/10.1016/j.talanta.2011.08.046

[115]. Marsich, E.; Travan, A.; Donati, I.; Di Luca, A.; Benincasa, M.; Crosera, M.; Paoletti, S. Colloids Surf. B Biointerfaces 2011, 83 (2), 331-339.
https://doi.org/10.1016/j.colsurfb.2010.12.002

[116]. Maity, I.; Rasale, D. B.; Das, A. K. Soft Matter 2012, 8 (19), 5301-5308.
https://doi.org/10.1039/c2sm25126d

[117]. Fuhrer, R.; Athanassiou, E. K.; Luechinger, N. A.; Stark, W. J. Small 2009, 5 (3), 383-388.
https://doi.org/10.1002/smll.200801091

[118]. Shi, W.; Crews, K.; Chopra, N. Mater. Technol. (UK) 2010, 25 (3-4), 149-157.
https://doi.org/10.1179/175355510X12723642365368

[119]. Cometa, S.; Iatta, R.; Ricci, M. A.; Ferretti, C.; De Giglio, E. J. Bioact. Compat. Polym. 2013, 28 (5), 508-522.
https://doi.org/10.1177/0883911513498960

[120]. Hu, X.; Hao, X.; Wu, Y.; Zhang, J.; Zhang, X.; Wang, P. C.; Zou, G.; Liang, X.-J. J. Mater. Chem. B Mater. Biol. Med. 2013, 1 (8), 1109-1118.
https://doi.org/10.1039/c2tb00223j

[121]. Samanta, S. K.; Pal, A.; Bhattacharya, S.; Rao, C. N. R. J. Mater. Chem. 2010, 20 (33), 6881-6890.
https://doi.org/10.1039/c0jm00491j

[122]. Lo, C.-W.; Zhu, D.; Jiang, H. Soft Matter 2011, 7 (12), 5604-5609.
https://doi.org/10.1039/c1sm00011j

[123]. Ninh, C.; Cramer, M.; Bettinger, C. J. Biomater. Sci. 2014, 2 (5), 766-774.
https://doi.org/10.1039/c3bm60321k

[124]. Moughton, A. O.; Hillmyer, M. A.; Lodge, T. P. Macromolecules 2012, 45 (1), 2-19.
https://doi.org/10.1021/ma201865s

[125]. Chacko, R. T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Adv. Drug Deliv. Rev. 2012, 64 (9), 836-851.
https://doi.org/10.1016/j.addr.2012.02.002

[126]. Li, G. L.; Möhwald, H.; Shchukin, D. G. Chem. Soc. Rev. 2013, 42 (8), 3628-3646.
https://doi.org/10.1039/c3cs35517a

[127]. Schlüter, A. D.; Halperin, A.; Kröger, M.; Vlassopoulos, D.; Wegner, G.; Zhang, B. ACS Macro Lett. 2014, 3 (10), 991-998.
https://doi.org/10.1021/mz500376e

[128]. Mays, J. W. Macromolecules 1988, 21 (11), 3179-3183.
https://doi.org/10.1021/ma00189a009

[129]. Zhang, H.; Patel, A.; Gaharwar, A. K.; Mihaila, S. M.; Iviglia, G.; Mukundan, S.; Bae, H.; Yang, H.; Khademhosseini, A. Biomacromolecules 2013, 14 (5), 1299-1310.
https://doi.org/10.1021/bm301825q

[130]. Zhong, S.; Yung, L. Y. L. J. Biomed. Mater. Res. A 2009, 91 (1), 114-122.
https://doi.org/10.1002/jbm.a.32188

[131]. Baït, N.; Grassl, B.; Derail, C.; Benaboura, A. Soft Matter 2011, 7 (5), 2025-2032.
https://doi.org/10.1039/c0sm01123a

[132]. Luo, R.-C.; Lim, Z. H.; Li, W.; Shi, P.; Chen, C.-H. Chem. Commun. (Camb.) 2014, 50 (53), 7052-7055.
https://doi.org/10.1039/C4CC02216E

[133]. Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M. A.; Ahmad, S. ACS Omega 2018, 3 (11), 15809-15820.
https://doi.org/10.1021/acsomega.8b01691

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).