European Journal of Chemistry 2021, 12(3), 329-339 | doi: https://doi.org/10.5155/eurjchem.12.3.329-339.2100 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | REVIEW ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

A review on polymer nanocomposite hydrogel preparation, characterization, and applications


Md. Arif Roman Azady (1) orcid , Sony Ahmed (2) orcid , Md. Shafiul Islam (3,*) orcid

(1) Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
(2) Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, 21030, Malaysia
(3) Department of Chemistry, Virginia Commonwealth University, Richmond, 23223, United States
(*) Corresponding Author

Received: 30 Jan 2021 | Revised: 27 Mar 2021 | Accepted: 03 Apr 2021 | Published: 30 Sep 2021 | Issue Date: September 2021

Abstract


Nanocomposite hydrogels, made by incorporating nanoparticles into a hydrogel matrix, have been developed to fulfill the need for materials with enhanced and predictable mechanical properties and functionality. This review breaks down the process of preparing and characterizing nanocomposite hydrogels and looks at the various applications they can be used for. Through careful selection of the nanoparticle and hydrogel types, as well as the preparation method, the degree of crosslinking and the strength of the intermolecular interactions between the nanoparticles and the hydrogel matrix can be controlled. Once the nanomaterial is prepared, the morphology, gel content, thermal stability, and mechanical properties are investigated. By varying the concentrations of nanoparticles within the hydrogel matrix, nanocomposite hydrogels with optimal functionality and mechanical properties are produced. The optimized nanomaterial can then be used for its intended application(s); here the focus is on applications in the biomedical and dye adsorption fields. With further research, it is predicted that nanocomposite hydrogels will fulfill their potential to be used in practical, everyday applications.


Keywords


Hydrogel; Gel content; X-ray diffraction; Adsorption study; Nanocomposite hydrogel; Thermogravimetric analysis

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.3.329-339.2100

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 292 times | icon graph PDF Article downloaded 29 times


References


[1]. Yang, Y.; Han, S.; Fan, Q.; Ugbolue, S. C. Text. Res. J. 2005, 75 (8), 622-627.
https://doi.org/10.1177/0040517505053948

[2]. Li, S.; Zhang, H.; Feng, J.; Xu, R.; Liu, X. Desalination 2011, 280 (1-3), 95-102.
https://doi.org/10.1016/j.desal.2011.06.056

[3]. Janovak, L.; Varga, J.; Kemeny, L.; Dekany, I. Appl. Clay Sci. 2009, 43 (2), 260-270.
https://doi.org/10.1016/j.clay.2008.08.002

[4]. Bahram, M.; Mohseni, N.; Moghtader, M. An Introduction to Hydrogels and Some Recent Applications. In Emerging Concepts in Analysis and Applications of Hydrogels; InTech, 2016. https://www.intechopen.com/books/emerging-concepts-in-analysis-and-applications-of-hydrogels/an-introduction-to-hydrogels-and-some-recent-applications (accessed January 10, 2020).
https://doi.org/10.5772/64301

[5]. Abou Taleb, M. F.; Hegazy, D. E.; Ismail, S. A. Carbohydr. Polym. 2012, 87 (3), 2263-2269.
https://doi.org/10.1016/j.carbpol.2011.10.058

[6]. Caló, E.; Khutoryanskiy, V. V. Eur. Polym. J. 2015, 65, 252-267.
https://doi.org/10.1016/j.eurpolymj.2014.11.024

[7]. Wang, H.; Heilshorn, S. C. Adv. Mater. 2015, 27 (25), 3717-3736.
https://doi.org/10.1002/adma.201501558

[8]. Li, J.; Mooney, D. J. Nat. Rev. Mater. 2016, 1 (12), 16071, 1-17.
https://doi.org/10.1038/natrevmats.2016.71

[9]. Qin, M.; Sun, M.; Hua, M.; He, X. Curr. Opin. Solid State Mater. Sci. 2019, 23 (1), 13-27.
https://doi.org/10.1016/j.cossms.2018.10.001

[10]. Xue, Z.; Wang, S.; Lin, L.; Chen, L.; Liu, M.; Feng, L.; Jiang, L. Adv. Mater. 2011, 23 (37), 4270-4273.
https://doi.org/10.1002/adma.201102616

[11]. Bohidar, H. B.; Dubin, P.; Osada, Y. Polymer Gels: Fundamentals and Applications; American Chemical Society, 2002.
https://doi.org/10.1021/bk-2002-0833

[12]. Rama Rao, G. V.; Krug, M. E.; Balamurugan, S.; Xu, H.; Xu, Q.; López, G. P. Chem. Mater. 2002, 14 (12), 5075-5080.
https://doi.org/10.1021/cm020627b

[13]. Guilherme, M. R.; Silva, R.; Girotto, E. M.; Rubira, A. F.; Muniz, E. C. Polymer (Guildf.) 2003, 44 (15), 4213-4219.
https://doi.org/10.1016/S0032-3861(03)00370-7

[14]. Liu, Y.; Xie, J.-J.; Zhang, X.-Y. J. Appl. Polym. Sci. 2003, 90 (13), 3481-3487.
https://doi.org/10.1002/app.13003

[15]. Ketelson, H. A.; Meadows, D. L.; Stone, R. P. Colloids Surf. B Biointerfaces 2005, 40 (1), 1-9.
https://doi.org/10.1016/j.colsurfb.2004.07.010

[16]. Bandla, M.; Abbavaram, B. R.; Kokkarachedu, V.; Sadiku, R. E. Polym. Compos. 2017, 38, E16-E23.
https://doi.org/10.1002/pc.23963

[17]. Boyko, V.; Pich, A.; Lu, Y.; Richter, S.; Arndt, K.-F.; Adler, H.-J. P. Polymer (Guildf.) 2003, 44 (26), 7821-7827.
https://doi.org/10.1016/j.polymer.2003.09.037

[18]. Kuckling, D.; Ivanova, I. G.; Adler, H.-J. P.; Wolff, T. Polymer (Guildf.) 2002, 43 (6), 1813-1820.
https://doi.org/10.1016/S0032-3861(01)00766-2

[19]. Vo, C. D.; Kuckling, D.; Adler, H.-J. P.; Schnhoff, M. Colloid Polym. Sci. 2002, 280 (5), 400-409.
https://doi.org/10.1007/s003960100559

[20]. Zhang, X.-Z.; Zhuo, R.-X. Macromol. Rapid Commun. 1999, 20 (4), 229-231.
https://doi.org/10.1002/(SICI)1521-3927(19990401)20:4<229::AID-MARC229>3.0.CO;2-N

[21]. Serizawa, T.; Wakita, K.; Akashi, M. Macromolecules 2002, 35 (1), 10-12.
https://doi.org/10.1021/ma011362+

[22]. Zhang, X.-Z.; Yang, Y.-Y.; Chung, T.-S.; Ma, K.-X. Langmuir 2001, 17 (20), 6094-6099.
https://doi.org/10.1021/la010105v

[23]. Zhang, X.-Z.; Zhuo, R.-X. Colloid Polym. Sci. 1999, 277 (11), 1079-1082.
https://doi.org/10.1007/s003960050493

[24]. Van Durme, K.; Van Mele, B.; Loos, W.; Du Prez, F. E. Polymer (Guildf.) 2005, 46 (23), 9851-9862.
https://doi.org/10.1016/j.polymer.2005.08.032

[25]. Zhang, X.-Z.; Zhuo, R.-X. Eur. Polym. J. 2000, 36 (3), 643-645.
https://doi.org/10.1016/S0014-3057(99)00089-0

[26]. Bin Imran, A.; Esaki, K.; Gotoh, H.; Seki, T.; Ito, K.; Sakai, Y.; Takeoka, Y. Nat. Commun. 2014, 5 (1), 5124.
https://doi.org/10.1038/ncomms6124

[27]. Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Nature 2012, 489 (7414), 133-136.
https://doi.org/10.1038/nature11409

[28]. Okumura, Y.; Ito, K. Adv. Mater. 2001, 13 (7), 485-487.
https://doi.org/10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T

[29]. Merino, S.; Martín, C.; Kostarelos, K.; Prato, M.; Vázquez, E. ACS Nano 2015, 9 (5), 4686-4697.
https://doi.org/10.1021/acsnano.5b01433

[30]. Wu, Y.; Zhou, Z.; Fan, Q.; Chen, L.; Zhu, M. J. Mater. Chem. 2009, 19 (39), 7340-7346.
https://doi.org/10.1039/b909125d

[31]. Lin, J.; Xu, S.; Shi, X.; Feng, S.; Wang, J. Polym. Adv. Technol. 2009, 20 (7), 645-649.
https://doi.org/10.1002/pat.1322

[32]. Tang, Q.; Sun, X.; Li, Q.; Wu, J.; Lin, J.; Huang, M. E-polymers 2009, 9 (1).
https://doi.org/10.1515/epoly.2009.9.1.1087

[33]. Fleischmann, C.; Gopez, J.; Lundberg, P.; Ritter, H.; Killops, K. L.; Hawker, C. J.; Klinger, D. Polym. Chem. 2015, 6 (11), 2029-2037.
https://doi.org/10.1039/C4PY01766H

[34]. Abdurrahmanoglu, S.; Can, V.; Okay, O. J. Appl. Polym. Sci. 2008, 109 (6), 3714-3724.
https://doi.org/10.1002/app.28607

[35]. Mansoori, Y.; Salemi, H. Polym. Sci. Ser. B 2015, 57 (2), 167-179.
https://doi.org/10.1134/S1560090415020086

[36]. Chen, T.; Hou, K.; Ren, Q.; Chen, G.; Wei, P.; Zhu, M. Macromol. Rapid Commun. 2018, 39 (21), e1800337.
https://doi.org/10.1002/marc.201800337

[37]. Haraguchi, K.; Takehisa, T. Adv. Mater. 2002, 14 (16), 1120-1124.
https://doi.org/10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9

[38]. Liu, R.; Liang, S.; Tang, X.-Z.; Yan, D.; Li, X.; Yu, Z.-Z. J. Mater. Chem. 2012, 22 (28), 14160-14167.
https://doi.org/10.1039/c2jm32541a

[39]. Sun, G.; Li, Z.; Liang, R.; Weng, L.-T.; Zhang, L. Nat. Commun. 2016, 7 (1), 12095.
https://doi.org/10.1038/ncomms12095

[40]. Hu, Z.; Chen, G. Adv. Mater. 2014, 26 (34), 5950-5956.
https://doi.org/10.1002/adma.201400179

[41]. Binnemans, K. Chem. Rev. 2009, 109 (9), 4283-4374.
https://doi.org/10.1021/cr8003983

[42]. Bünzli, J.-C. G. Chem. Rev. 2010, 110 (5), 2729-2755.
https://doi.org/10.1021/cr900362e

[43]. Liu, F.; Carlos, L. D.; Ferreira, R. A. S.; Rocha, J.; Gaudino, M. C.; Robitzer, M.; Quignard, F. Biomacromolecules 2008, 9 (7), 1945-1950.
https://doi.org/10.1021/bm8002122

[44]. Qiao, Y.; Lin, Y.; Zhang, S.; Huang, J. Chemistry 2011, 17 (18), 5180-5187.
https://doi.org/10.1002/chem.201003255

[45]. Schexnailder, P.; Schmidt, G. Colloid Polym. Sci. 2009, 287 (1), 1-11.
https://doi.org/10.1007/s00396-008-1949-0

[46]. Gaharwar, A. K.; Peppas, N. A.; Khademhosseini, A. Biotechnol. Bioeng. 2014, 111 (3), 441-453.
https://doi.org/10.1002/bit.25160

[47]. Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J. Adv. Sci. (Weinh.) 2015, 2 (1-2), 1400010.
https://doi.org/10.1002/advs.201400010

[48]. Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. Adv. Mater. 2017, 29. 1700321.
https://doi.org/10.1002/adma.201700321

[49]. Zhang, X.; Pint, C. L.; Lee, M. H.; Schubert, B. E.; Jamshidi, A.; Takei, K.; Ko, H.; Gillies, A.; Bardhan, R.; Urban, J. J.; Wu, M.; Fearing, R.; Javey, A. Nano Lett. 2011, 11 (8), 3239-3244.
https://doi.org/10.1021/nl201503e

[50]. Wang, W.; Chen, J.; Li, M.; Jia, H.; Han, X.; Zhang, J.; Zou, Y.; Tan, B.; Liang, W.; Shang, Y.; Xu, Q.; A, S.; Wang, W.; Mao, J.; Gao, X.; Fan, G.; Liu, W. ACS Appl. Mater. Interfaces 2019, 11 (3), 2880-2890.
https://doi.org/10.1021/acsami.8b20158

[51]. Van Tran, V.; Park, D.; Lee, Y.-C. Environ. Sci. Pollut. Res. Int. 2018, 25 (25), 24569-24599.
https://doi.org/10.1007/s11356-018-2605-y

[52]. Tang, S.; Zeng, Y.; Wang, X. Polym. Eng. Sci. 2010, 50 (11), 2252-2257.
https://doi.org/10.1002/pen.21767

[53]. Abdullah, Z. W.; Dong, Y.; Davies, I. J.; Barbhuiya, S. Polym. Plast. Technol. Eng. 2017, 56 (12), 1307-1344.
https://doi.org/10.1080/03602559.2016.1275684

[54]. Kumar, D.; Jat, S. K.; Khanna, P. K.; Vijayan, N.; Banerjee, S. Int. J. Green Nanotech. 2012, 4 (3), 408-416.
https://doi.org/10.1080/19430892.2012.738509

[55]. Aslam, M.; Kalyar, M. A.; Raza, Z. A. J. Mater. Sci.: Mater. Electron. 2017, 28 (18), 13401-13413.
https://doi.org/10.1007/s10854-017-7177-y

[56]. Godovsky, D. Y. Device Applications of Polymer-Nanocomposites. In Biopolymers · PVA Hydrogels, Anionic Polymerisation Nanocomposites; Springer Berlin Heidelberg: Berlin, Heidelberg, 2000; pp 163-205.
https://doi.org/10.1007/3-540-46414-X_4

[57]. Ruiz-Palomero, C.; Soriano, M. L.; Benítez-Martínez, S.; Valcárcel, M. Sens. Actuators B Chem. 2017, 245, 946-953.
https://doi.org/10.1016/j.snb.2017.02.006

[58]. Sui, B.; Li, Y.; Yang, B. Chin. Chem. Lett. 2020, 31 (6), 1443-1447.
https://doi.org/10.1016/j.cclet.2019.08.023

[59]. Konwar, A.; Gogoi, N.; Majumdar, G.; Chowdhury, D. Carbohydr. Polym. 2015, 115, 238-245.
https://doi.org/10.1016/j.carbpol.2014.08.021

[60]. Martín-Pacheco, A.; Del Río Castillo, A. E.; Martín, C.; Herrero, M. A.; Merino, S.; García Fierro, J. L.; Díez-Barra, E.; Vázquez, E. ACS Appl. Mater. Interfaces 2018, 10 (21), 18192-18201.
https://doi.org/10.1021/acsami.8b02162

[61]. Shao, H.; Wang, C.-F.; Chen, S.; Xu, C. J. Polym. Sci. A Polym. Chem. 2014, 52 (7), 912-920.
https://doi.org/10.1002/pola.27086

[62]. Hu, M.; Gu, X.; Hu, Y.; Wang, T.; Huang, J.; Wang, C. Macromolecules 2016, 49 (8), 3174-3183.
https://doi.org/10.1021/acs.macromol.5b02352

[63]. Guo, J.; Zhou, M.; Yang, C. Sci. Rep. 2017, 7 (1), 7902.
https://doi.org/10.1038/s41598-017-08353-8

[64]. Wang, L.; Li, B.; Xu, F.; Li, Y.; Xu, Z.; Wei, D.; Feng, Y.; Wang, Y.; Jia, D.; Zhou, Y. Biomaterials 2017, 145, 192-206.
https://doi.org/10.1016/j.biomaterials.2017.08.039

[65]. Rezazadeh, B.; Sirousazar, M.; Abbasi‐Chianeh, V.; Kheiri, F. J. Appl. Polym. Sci. 2020, 137 (18), 48631.
https://doi.org/10.1002/app.48631

[66]. Huang, Q.; Du, C.; Hua, Y.; Zhang, J.; Peng, R.; Yao, X. BioResources. 2019, 14, 7134-7147.

[67]. Liao, G.; Hu, J.; Chen, Z.; Zhang, R.; Wang, G.; Kuang, T. Front. Chem. 2018, 6, 450.
https://doi.org/10.3389/fchem.2018.00450

[68]. Liu, Y.; Gao, T.; Xiao, H.; Guo, W.; Sun, B.; Pei, M.; Zhou, G. Electrochim. Acta 2017, 229, 239-252.
https://doi.org/10.1016/j.electacta.2017.01.142

[69]. Sheng, K.-X.; Xu, Y.-X.; Li, C.; Shi, G.-Q. New Carbon Mater. 2011, 26 (1), 9-15.
https://doi.org/10.1016/S1872-5805(11)60062-0

[70]. Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. ACS Nano 2012, 6 (3), 2693-2703.
https://doi.org/10.1021/nn300082k

[71]. Tungkavet, T.; Seetapan, N.; Pattavarakorn, D.; Sirivat, A. Polymer (Guildf.) 2015, 70, 242-251.
https://doi.org/10.1016/j.polymer.2015.06.027

[72]. Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L. Appl. Phys. Lett. 2002, 80 (24), 4609-4611.
https://doi.org/10.1063/1.1481536

[73]. Pardo-Yissar, V.; Gabai, R.; Shipway, A. N.; Bourenko, T.; Willner, I. Adv. Mater. 2001, 13 (17), 1320-1323.
https://doi.org/10.1002/1521-4095(200109)13:17<1320::AID-ADMA1320>3.0.CO;2-8

[74]. Liu, M.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Aida, T. Nat. Commun. 2013, 4 (1), 2029.
https://doi.org/10.1038/ncomms3029

[75]. Khoylou, F.; Naimian, F. Radiat. Phys. Chem. Oxf. Engl. 1993 2009, 78 (3), 195-198.
https://doi.org/10.1016/j.radphyschem.2008.11.008

[76]. Ranjha, N. M.; Ayub, G.; Naseem, S.; Ansari, M. T. J. Mater. Sci. Mater. Med. 2010, 21 (10), 2805-2816.
https://doi.org/10.1007/s10856-010-4134-1

[77]. Abd Alla, S. G.; Nizam El-Din, H. M.; El-Naggar, A. W. M. Eur. Polym. J. 2007, 43 (7), 2987-2998.
https://doi.org/10.1016/j.eurpolymj.2007.04.016

[78]. Park, H.; Guo, X.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.; Kasper, F. K.; Mikos, A. G. Biomacromolecules 2009, 10 (3), 541-546.
https://doi.org/10.1021/bm801197m

[79]. Omidian, H.; Hasherni, S. A.; Askari, F.; Nafisi, S. Iranian J. Polymer Sci. Tech. 1994, 3 (2), 115-119.

[80]. Tighe, B. J. Br. Polym. J. 1986, 18 (1), 8-13.
https://doi.org/10.1002/pi.4980180104

[81]. Mohammadi, S.; Vafaie Sefti, M.; Baghban Salehi, M.; Mousavi Moghadam, A.; Rajaee, S.; Naderi, H. Asia-Pac. J. Chem. Eng. 2015, 10 (5), 743-753.
https://doi.org/10.1002/apj.1912

[82]. Aalaie, J.; Vasheghani-Farahani, E.; Rahmatpour, A.; Semsarzadeh, M. A. Eur. Polym. J. 2008, 44 (7), 2024-2031.
https://doi.org/10.1016/j.eurpolymj.2008.04.031

[83]. Wong, R. S. H.; Ashton, M.; Dodou, K. Pharmaceutics 2015, 7 (3), 305-319.
https://doi.org/10.3390/pharmaceutics7030305

[84]. Kurecic, M.; Smole, M. S. Nanocomposites-New Trends and Developments; IntechOpen, 2012.

[85]. Sirousazar, M.; Kokabi, M.; Hassan, Z. M.; Bahramian, A. R. J. Macromol. Sci. Phys. 2012, 51 (8), 1583-1595.
https://doi.org/10.1080/00222348.2012.656010

[86]. Hosseinzadeh, H. Pol. J. Chem. Technol. 2015, 17 (2), 70-76.
https://doi.org/10.1515/pjct-2015-0032

[87]. Wang, H.; Li, J.; Ding, N.; Zeng, X.; Tang, X.; Sun, Y.; Lei, T.; Lin, L. Chem. Eng. J. 2020, 386 (124021), 124021.
https://doi.org/10.1016/j.cej.2020.124021

[88]. Bakravi, A.; Ahamadian, Y.; Hashemi, H.; Namazi, H. Adv. Polym. Technol. 2018, 37 (7), 2625-2635.
https://doi.org/10.1002/adv.21938

[89]. Franco, M. K. K. D.; Araújo, D. R. de; Paula, E. de; Cavalcanti, L.; Yokaichiya, F. X‐ray Scattering Techniques Applied in the Development of Drug Delivery Systems. In X-ray Scattering; InTech, 2017. https://www.intechopen.com/books/x-ray-scattering/x-ray-scattering-techniques-applied-in-the-development-of-drug-delivery-systems (accessed January 10, 2020).
https://doi.org/10.5772/65326

[90]. Liu, M.; Li, W.; Rong, J.; Zhou, C. Colloid Polym. Sci. 2012, 290 (10), 895-905.
https://doi.org/10.1007/s00396-012-2588-z

[91]. Kazanskii, K. S.; Dubrovskii, S. A. Chemistry and Physics of "Agricultural" Hydrogels. In Polyelectrolytes Hydrogels Chromatographic Materials; Springer Berlin Heidelberg: Berlin, Heidelberg, 1992; pp 97-133.
https://doi.org/10.1007/3-540-55109-3_3

[92]. Maitland, G. C. Curr. Opin. Colloid Interface Sci. 2000, 5 (5-6), 301-311.
https://doi.org/10.1016/S1359-0294(00)00069-8

[93]. Calvert, P. Adv. Mater. 2009, 21 (7), 743-756.
https://doi.org/10.1002/adma.200800534

[94]. Drury, J. L.; Mooney, D. J. Biomaterials 2003, 24 (24), 4337-4351.
https://doi.org/10.1016/S0142-9612(03)00340-5

[95]. Yi, J.-Z.; Zhang, L.-M. Bioresour. Technol. 2008, 99 (7), 2182-2186.
https://doi.org/10.1016/j.biortech.2007.05.028

[96]. Pang, J.; Wu, M.; Liu, X.; Wang, B.; Yang, J.; Xu, F.; Ma, M.; Zhang, X. Sci. Rep. 2017, 7 (1), 13233.
https://doi.org/10.1038/s41598-017-13374-4

[97]. Haraguchi, K.; Takehisa, T.; Fan, S. Macromolecules 2002, 35 (27), 10162-10171.
https://doi.org/10.1021/ma021301r

[98]. Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Macromolecules 2003, 36 (15), 5732-5741.
https://doi.org/10.1021/ma034366i

[99]. Choi, Y.; Simonsen, J. J. Nanosci. Nanotechnol. 2006, 6 (3), 633-639.
https://doi.org/10.1166/jnn.2006.132

[100]. Zhou, C.; Wu, Q. Colloids Surf. B Biointerfaces 2011, 84 (1), 155-162.
https://doi.org/10.1016/j.colsurfb.2010.12.030

[101]. Coats, A. W.; Redfern, J. P. Analyst 1963, 88 (1053), 906-924.
https://doi.org/10.1039/an9638800906

[102]. Thomas, S.; Thomas, R.; Zachariah, A. K.; Kumar, R. Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, 1st ed.; Elsevier, 2017.

[103]. Thakur, S.; Arotiba, O. Adsorp. Sci. Technol. 2018, 36 (1-2), 458-477.
https://doi.org/10.1177/0263617417700636

[104]. Kong, W.; Chang, M.; Zhang, C.; Liu, X.; He, B.; Ren, J. Polymers (Basel) 2019, 11 (4), 621.
https://doi.org/10.3390/polym11040621

[105]. Mohsen, M.; 1 Physics Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt; Gomaa, E.; Ahmed Mazaid, N.; Mohammed, R. AIMS Mater. Sci. 2017, 4 (5), 1122-1139.
https://doi.org/10.3934/matersci.2017.5.1122

[106]. Aydınoglu, D.; Akgül, Ö.; Bayram, V.; Şen, S. Polym. Plast. Technol. Eng. 2014, 53 (16), 1706-1722.
https://doi.org/10.1080/03602559.2014.919656

[107]. Tong, D. S.; Wu, C. W.; Adebajo, M. O.; Jin, G. C.; Yu, W. H.; Ji, S. F.; Zhou, C. H. Appl. Clay Sci. 2018, 161, 256-264.
https://doi.org/10.1016/j.clay.2018.02.017

[108]. Babaladimath, G.; Badalamoole, V. Polym. Bull. (Berl.) 2019, 76 (8), 4215-4236.
https://doi.org/10.1007/s00289-018-2584-7

[109]. Pal, S.; Ghorai, S.; Das, C.; Samrat, S.; Ghosh, A.; Panda, A. B. Ind. Eng. Chem. Res. 2012, 51 (48), 15546-15556.
https://doi.org/10.1021/ie301134a

[110]. Chen, L.; Li, Y.; Du, Q.; Wang, Z.; Xia, Y.; Yedinak, E.; Lou, J.; Ci, L. Carbohydr. Polym. 2017, 155, 345-353.
https://doi.org/10.1016/j.carbpol.2016.08.047

[111]. Moritz, M.; Geszke-Moritz, M. Chem. Eng. J. 2013, 228, 596-613.
https://doi.org/10.1016/j.cej.2013.05.046

[112]. Bhowmick, S.; Koul, V. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 109-119.
https://doi.org/10.1016/j.msec.2015.10.003

[113]. Abdel-Halim, E. S.; Al-Deyab, S. S. Int. J. Biol. Macromol. 2014, 69, 456-463.
https://doi.org/10.1016/j.ijbiomac.2014.06.002

[114]. Wang, J.; Banerji, S.; Menegazzo, N.; Peng, W.; Zou, Q.; Booksh, K. S. Talanta 2011, 86, 133-141.
https://doi.org/10.1016/j.talanta.2011.08.046

[115]. Marsich, E.; Travan, A.; Donati, I.; Di Luca, A.; Benincasa, M.; Crosera, M.; Paoletti, S. Colloids Surf. B Biointerfaces 2011, 83 (2), 331-339.
https://doi.org/10.1016/j.colsurfb.2010.12.002

[116]. Maity, I.; Rasale, D. B.; Das, A. K. Soft Matter 2012, 8 (19), 5301-5308.
https://doi.org/10.1039/c2sm25126d

[117]. Fuhrer, R.; Athanassiou, E. K.; Luechinger, N. A.; Stark, W. J. Small 2009, 5 (3), 383-388.
https://doi.org/10.1002/smll.200801091

[118]. Shi, W.; Crews, K.; Chopra, N. Mater. Technol. (UK) 2010, 25 (3-4), 149-157.
https://doi.org/10.1179/175355510X12723642365368

[119]. Cometa, S.; Iatta, R.; Ricci, M. A.; Ferretti, C.; De Giglio, E. J. Bioact. Compat. Polym. 2013, 28 (5), 508-522.
https://doi.org/10.1177/0883911513498960

[120]. Hu, X.; Hao, X.; Wu, Y.; Zhang, J.; Zhang, X.; Wang, P. C.; Zou, G.; Liang, X.-J. J. Mater. Chem. B Mater. Biol. Med. 2013, 1 (8), 1109-1118.
https://doi.org/10.1039/c2tb00223j

[121]. Samanta, S. K.; Pal, A.; Bhattacharya, S.; Rao, C. N. R. J. Mater. Chem. 2010, 20 (33), 6881-6890.
https://doi.org/10.1039/c0jm00491j

[122]. Lo, C.-W.; Zhu, D.; Jiang, H. Soft Matter 2011, 7 (12), 5604-5609.
https://doi.org/10.1039/c1sm00011j

[123]. Ninh, C.; Cramer, M.; Bettinger, C. J. Biomater. Sci. 2014, 2 (5), 766-774.
https://doi.org/10.1039/c3bm60321k

[124]. Moughton, A. O.; Hillmyer, M. A.; Lodge, T. P. Macromolecules 2012, 45 (1), 2-19.
https://doi.org/10.1021/ma201865s

[125]. Chacko, R. T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Adv. Drug Deliv. Rev. 2012, 64 (9), 836-851.
https://doi.org/10.1016/j.addr.2012.02.002

[126]. Li, G. L.; Möhwald, H.; Shchukin, D. G. Chem. Soc. Rev. 2013, 42 (8), 3628-3646.
https://doi.org/10.1039/c3cs35517a

[127]. Schlüter, A. D.; Halperin, A.; Kröger, M.; Vlassopoulos, D.; Wegner, G.; Zhang, B. ACS Macro Lett. 2014, 3 (10), 991-998.
https://doi.org/10.1021/mz500376e

[128]. Mays, J. W. Macromolecules 1988, 21 (11), 3179-3183.
https://doi.org/10.1021/ma00189a009

[129]. Zhang, H.; Patel, A.; Gaharwar, A. K.; Mihaila, S. M.; Iviglia, G.; Mukundan, S.; Bae, H.; Yang, H.; Khademhosseini, A. Biomacromolecules 2013, 14 (5), 1299-1310.
https://doi.org/10.1021/bm301825q

[130]. Zhong, S.; Yung, L. Y. L. J. Biomed. Mater. Res. A 2009, 91 (1), 114-122.
https://doi.org/10.1002/jbm.a.32188

[131]. Baït, N.; Grassl, B.; Derail, C.; Benaboura, A. Soft Matter 2011, 7 (5), 2025-2032.
https://doi.org/10.1039/c0sm01123a

[132]. Luo, R.-C.; Lim, Z. H.; Li, W.; Shi, P.; Chen, C.-H. Chem. Commun. (Camb.) 2014, 50 (53), 7052-7055.
https://doi.org/10.1039/C4CC02216E

[133]. Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M. A.; Ahmad, S. ACS Omega 2018, 3 (11), 15809-15820.
https://doi.org/10.1021/acsomega.8b01691


How to cite


Azady, M.; Ahmed, S.; Islam, M. Eur. J. Chem. 2021, 12(3), 329-339. doi:10.5155/eurjchem.12.3.329-339.2100
Azady, M.; Ahmed, S.; Islam, M. A review on polymer nanocomposite hydrogel preparation, characterization, and applications. Eur. J. Chem. 2021, 12(3), 329-339. doi:10.5155/eurjchem.12.3.329-339.2100
Azady, M., Ahmed, S., & Islam, M. (2021). A review on polymer nanocomposite hydrogel preparation, characterization, and applications. European Journal of Chemistry, 12(3), 329-339. doi:10.5155/eurjchem.12.3.329-339.2100
Azady, Md. Arif, Sony Ahmed, & Md. Shafiul Islam. "A review on polymer nanocomposite hydrogel preparation, characterization, and applications." European Journal of Chemistry [Online], 12.3 (2021): 329-339. Web. 20 Oct. 2021
Azady, Md. Arif, Ahmed, Sony, AND Islam, Md. Shafiul. "A review on polymer nanocomposite hydrogel preparation, characterization, and applications" European Journal of Chemistry [Online], Volume 12 Number 3 (30 September 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.3.329-339.2100

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(3), 329-339 | doi: https://doi.org/10.5155/eurjchem.12.3.329-339.2100 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.